Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Mol Neurosci ; 15: 918321, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35966012

RESUMO

Neuropathic pain is a debilitating chronic condition provoked by a lesion in the nervous system and it induces functional alterations to the noradrenergic locus coeruleus (LC), affecting distinct dimensions of pain, like sensorial hypersensitivity, pain-induced depression, and anxiety. However, the neurobiological changes induced by nerve damage in the LC remain unclear. Here, we analyzed excitatory and inhibitory inputs to the LC, as well as the possible damage that noradrenergic neurons suffer after the induction of neuropathic pain through chronic constriction injury (CCI). Neuropathic pain was induced in male Sprague-Dawley rats, and the expression of the vesicular glutamate transporter 1 or 2 (VGLUT1 or VGLUT2), vesicular GABA transporter (VGAT), and cleaved caspase-3 (CC3) was analyzed by immunofluorescence 7 (CCI7d) or 28 days after the original lesion (CCI28d). While no significant differences in the density of VGLUT1 puncta were evident, CCI7d induced a significant increase in the perisomatic VGLUT2/VGAT ratio relative to Sham-operated and CCI28d animals. By contrast, when the entire region of LC is evaluated, there was a significant reduction in the density of VGLUT2 puncta in CCI28d animals, without changes in VGLUT2/VGAT ratio relative to the CCI7d animals. Additionally, changes in the noradrenergic soma size, and a lower density of mitochondria and lysosomes were evident in CCI28d animals. Interestingly, enhanced expression of the apoptotic marker CC3 was also evident in the CCI28d rats, mainly co-localizing with glial fibrillary acidic protein but not with any neuronal or noradrenergic marker. Overall, short-term pain appears to lead to an increase of markers of excitatory synapses in the perisomatic region of noradrenergic cells in the LC, an effect that is lost after long-term pain, which appears to activate apoptosis.

2.
Vet Sci ; 9(8)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36006338

RESUMO

Common toads have been used since ancient times for remedies and thus constitute excellent biological material for pharmacological and natural product research. According to the results of a previous analysis of the therapeutic use of amphibians in Spain, we decided to carry out a histological study that provides a complementary view of their ethnopharmacology, through the natterjack toad (Epidalea calamita). This species possesses a characteristic integument, where the parotoid glands stand out, and it has been used in different ethnoveterinary and ethnomedical practices. This histological study of their glandular variability allow us to understand the stages through which the animal synthesises and stores a heterogeneous glandular content according to the areas of the body and the functional moment of the glands. To study tegumentary cytology, a high-resolution, plastic embedding, semi-thin (1 micron) section method was applied. Up to 20 skin patches sampled from the dorsal and ventral sides were processed from the two adult specimens collected, which were roadkill. Serous/venom glands display a genetic and biochemical complexity, leading to a cocktail that remains stored (and perhaps changes over time) until extrusion, but mucous glands, working continuously to produce a surface protection layer, also produce a set of active protein (and other) substances that dissolve into mucous material, making a biologically active covering. This study provides a better understanding of the use of traditional remedies in ethnoveterinary medicine.

3.
Free Radic Biol Med ; 135: 274-282, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30862545

RESUMO

Mitochondrial dysfunction named complex I syndrome was observed in striatum mitochondria of rotenone treated rats (2 mg rotenone/kg, i. p., for 30 or 60 days) in an animal model of Parkinson disease. After 60 days of rotenone treatment, the animals showed: (a) 6-fold increased bradykinesia and 60% decreased locomotor activity; (b) 35-34% decreases in striatum O2 uptake and in state 3 mitochondrial respiration with malate-glutamate as substrate; (c) 43-57% diminished striatum complex I activity with 60-71% decreased striatum mitochondrial NOS activity, determined both as biochemical activity and as functional activity (by the NO inhibition of active respiration); (d) 34-40% increased rates of mitochondrial O2•- and H2O2 productions and 36-46% increased contents of the products of phospholipid peroxidation and of protein oxidation; and (e) 24% decreased striatum mitochondrial content, likely associated to decreased NO-dependent mitochondrial biogenesis. Intermediate values were observed after 30 days of rotenone treatment. Frontal cortex tissue and mitochondria showed similar but less marked changes. Rotenone-treated rats showed mitochondrial complex I syndrome associated with cellular oxidative stress in the dopaminergic brain areas of striatum and frontal cortex, a fact that describes the high sensitivity of mitochondrial complex I to inactivation by oxidative reactions.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Doença de Parkinson/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Modelos Animais de Doenças , Complexo I de Transporte de Elétrons/deficiência , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/metabolismo , Lobo Frontal/patologia , Substância Cinzenta/efeitos dos fármacos , Substância Cinzenta/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Hipocinesia/induzido quimicamente , Hipocinesia/metabolismo , Hipocinesia/patologia , Peroxidação de Lipídeos/efeitos dos fármacos , Locomoção/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/patologia , Estresse Oxidativo/efeitos dos fármacos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/patologia , Ratos , Rotenona/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA