Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Eur Phys J E Soft Matter ; 46(12): 122, 2023 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-38060163

RESUMO

Acid-base equilibria directly influence the functionality and behavior of particles in a system. Due to the ionizing effects of acid-base functional groups, particles will undergo charge exchange. The degree of ionization and their intermolecular and electrostatic interactions are controlled by varying the pH and salt concentration of the solution in a system. Although the pH can be tuned in experiments, it is hard to model this effect using simulations or theoretical approaches. This is due to the difficulty in treating charge regulation and capturing the cooperative effects in a colloidal suspension with Coulombic interaction. In this work, we analyze a suspension of ionizable colloidal particles via molecular dynamics (MD) simulations, along with Monte Carlo simulations for charge regulation (MC-CR) and derive a phase diagram of the system as a function of pH. It is observed that as pH increases, particles functionalized with acid groups change their arrangement from face-centered cubic (FCC) packing to a disordered state. We attribute these transitions to an increase in the degree of charge polydispersity arising from an increase in pH. Our work shows that charge regulation leads to amorphous solids in colloids when the mean nanoparticle charge is sufficiently high.

2.
J Chem Phys ; 159(4)2023 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-37503851

RESUMO

Amorphous solids, such as glasses and gels, arise as the asymptotic limit of non-equilibrium and irreversible relaxation aging processes. These amorphous solids form when the system is suddenly and deeply quenched in the dynamic arrest region. We use the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory to investigate the formation of such structures via arrested spinodal decomposition in the screened symmetric restricted primitive model. We propose a direct correlation function that allows us to derive an expression for the functional derivative of the chemical potential, which serves as the necessary input in the NE-SCGLE theory. By analyzing the asymptotic localization length and the asymptotic characteristic length, we identify different classes of dynamic arrest states as a function of the density and the final quench temperature. The system features simultaneously attractive and repulsive interactions, resulting in different arrested regions in the non-equilibrium phase diagram for a given screened parameter: (i) ionic glasses, (ii) electrostatic gels, and (iii) attractive glasses. Finally, by collapsing the asymptotic effective structure factors at a typical fractal dimension of df = 3, we confirm the formation of gels slightly above the glass-gel transition in the arrested phase diagram.

3.
ACS Nano ; 17(15): 15012-15024, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37459253

RESUMO

Colloidal clusters and gels are ubiquitous in science and technology. Particle softness has a strong effect on interparticle interactions; however, our understanding of the role of this factor in the formation of colloidal clusters and gels is only beginning to evolve. Here, we report the results of experimental and simulation studies of the impact of particle softness on the assembly of clusters and networks from mixtures of oppositely charged polymer nanoparticles (NPs). Experiments were performed below or above the polymer glass transition temperature, at which the interaction potential and adhesive forces between the NPs were significantly varied. Hard NPs assembled in fractal clusters that subsequently organized in a kinetically arrested colloidal gel, while soft NPs formed dense precipitating aggregates, due to the NP deformation and the decreased interparticle distance. Importantly, interactions of hard and soft NPs led to the formation of discrete precipitating NP aggregates at a relatively low volume fraction of soft NPs. A phenomenological model was developed for interactions of oppositely charged NPs with varying softnesses. The experimental results were in agreement with molecular dynamics simulations based on the model. This work provides insight on interparticle interactions before, during, and after the formation of hard-hard, hard-soft, and soft-soft contacts and has impact for numerous applications of reversible colloidal gels, including their use as inks for additive manufacturing.

4.
J Chem Phys ; 158(2): 024904, 2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36641409

RESUMO

The interplay of liquid-liquid phase separation (LLPS) and dynamical arrest can lead to the formation of gels and glasses, which is relevant for such diverse fields as condensed matter physics, materials science, food engineering, and the pharmaceutical industry. In this context, protein solutions exhibit remarkable equilibrium and non-equilibrium behaviors. In the regime where attractive and repulsive forces compete, it has been demonstrated, for example, that the location of the dynamical arrest line seems to be independent of ionic strength, so that the arrest lines at different ionic screening lengths overlap, in contrast to the LLPS coexistence curves, which strongly depend on the salt concentration. In this work, we show that the same phenomenology can also be observed when the electrostatic repulsions are largely screened, and the range and strength of the attractions are varied. In particular, using lysozyme in brine as a model system, the metastable gas-liquid binodal and the dynamical arrest line as well as the second virial coefficient have been determined for various solution conditions by cloud-point measurements, optical microscopy, centrifugation experiments, and light scattering. With the aim of understanding this new experimental phenomenology, we apply the non-equilibrium self-consistent generalized Langevin equation theory to a simple model system with only excluded volume plus short-range attractions, to study the dependence of the predicted arrest lines on the range of the attractive interaction. The theoretical predictions find a good qualitative agreement with experiments when the range of the attraction is not too small compared with the size of the protein.


Assuntos
Modelos Biológicos , Proteínas , Géis , Concentração Osmolar , Eletricidade Estática , Soluções
5.
Phys Rev E ; 103(5): L050602, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34134327

RESUMO

The fundamental understanding of the dynamic and transport properties of liquids is crucial for the better processing of most materials. The usefulness of this understanding increases when it involves general scaling rules, such as the concept of the hard-sphere dynamic universality class, which provides a unifying scaling of the dynamics of soft-sphere repulsive systems. A relevant question is how far this concept extends to systems that also involve attractive interactions. To answer this question, in this work we performed systematic molecular and Brownian dynamics simulations with the Lennard-Jones system in a wide range of temperatures and densities and verify the extent to which its static and dynamic properties map onto those of the hard-sphere system. We determine that in most of the fluid regime, the Lennard-Jones liquid exhibits the same dynamic equivalence with the hard-sphere system as most purely repulsive fluids, thus establishing the degree of its inclusion in the hard-sphere dynamic universality class.

6.
Sci Rep ; 9(1): 16445, 2019 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-31712562

RESUMO

Recent experiments and computer simulations have revealed intriguing phenomenological fingerprints of the interference between the ordinary equilibrium gas-liquid phase transition and the non-equilibrium glass and gel transitions. We thus now know, for example, that the liquid-gas spinodal line and the glass transition loci intersect at a finite temperature and density, that when the gel and the glass transitions meet, mechanisms for multistep relaxation emerge, and that the formation of gels exhibits puzzling latency effects. In this work we demonstrate that the kinetic perspective of the non-equilibrium self-consistent generalized Langevin equation (NE-SCGLE) theory of irreversible processes in liquids provides a unifying first-principles microscopic theoretical framework to describe these and other phenomena associated with spinodal decomposition, gelation, glass transition, and their combinations. The resulting scenario is in reality the competition between two kinetically limiting behaviors, associated with the two distinct dynamic arrest transitions in which the liquid-glass line is predicted to bifurcate at low densities, below its intersection with the spinodal line.

7.
J Chem Phys ; 143(17): 174505, 2015 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-26547174

RESUMO

The non-equilibrium self-consistent generalized Langevin equation theory of irreversible relaxation [P. E. Ramrez-González and M. Medina-Noyola, Phys. Rev. E 82, 061503 (2010); 82, 061504 (2010)] is applied to the description of the non-equilibrium processes involved in the spinodal decomposition of suddenly and deeply quenched simple liquids. For model liquids with hard-sphere plus attractive (Yukawa or square well) pair potential, the theory predicts that the spinodal curve, besides being the threshold of the thermodynamic stability of homogeneous states, is also the borderline between the regions of ergodic and non-ergodic homogeneous states. It also predicts that the high-density liquid-glass transition line, whose high-temperature limit corresponds to the well-known hard-sphere glass transition, at lower temperature intersects the spinodal curve and continues inside the spinodal region as a glass-glass transition line. Within the region bounded from below by this low-temperature glass-glass transition and from above by the spinodal dynamic arrest line, we can recognize two distinct domains with qualitatively different temperature dependence of various physical properties. We interpret these two domains as corresponding to full gas-liquid phase separation conditions and to the formation of physical gels by arrested spinodal decomposition. The resulting theoretical scenario is consistent with the corresponding experimental observations in a specific colloidal model system.

8.
Artigo em Inglês | MEDLINE | ID: mdl-24229166

RESUMO

We perform systematic simulation experiments on model systems with soft-sphere repulsive interactions to test the predicted dynamic equivalence between soft-sphere liquids with similar static structure. For this we compare the simulated dynamics (mean squared displacement, intermediate scattering function, α-relaxation time, etc.) of different soft-sphere systems, between them and with the hard-sphere liquid. We then show that the referred dynamic equivalence does not depend on the (Newtonian or Brownian) nature of the microscopic laws of motion of the constituent particles, and hence, applies independently to colloidal and to atomic simple liquids. Finally, we verify another more recently proposed dynamic equivalence, this time between the long-time dynamics of an atomic liquid and its corresponding Brownian fluid (i.e., the Brownian system with the same interaction potential).

9.
J Phys Condens Matter ; 24(37): 375107, 2012 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-22889965

RESUMO

Using the generalized Langevin equation formalism and the process of contraction of the description we derive a general memory function equation for the thermal fluctuations of the local density of a simple atomic liquid. From the analysis of the long-time limit of this equation, a striking equivalence is suggested between the long-time dynamics of the atomic liquid and the dynamics of the corresponding Brownian liquid. This dynamic equivalence is confirmed here by comparing molecular and Brownian dynamics simulations of the self-intermediate scattering function and the long-time self-diffusion coefficient for the hard-sphere liquid.

10.
Phys Rev Lett ; 107(15): 155701, 2011 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-22107301

RESUMO

We employ the principle of dynamic equivalence between soft-sphere and hard-sphere fluids [Phys. Rev. E 68, 011405 (2003)] to describe the interplay of the effects of varying the density n, the temperature T, and the softness (characterized by a softness parameter ν(-1)) on the dynamics of glass-forming soft-sphere liquids in terms of simple scaling rules. The main prediction is the existence of a dynamic universality class associated with the hard-sphere fluid, constituted by the soft-sphere systems whose dynamic parameters depend on n, T, and ν only through the reduced density n*≡nσ(HS)(T*,ν). A number of scaling properties observed in recent experiments and simulations involving glass-forming fluids with repulsive short-range interactions are found to be a direct manifestation of this general dynamic equivalence principle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...