Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Elife ; 122023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37650378

RESUMO

The cohesin complex plays essential roles in chromosome segregation, 3D genome organisation, and DNA damage repair through its ability to modify DNA topology. In higher eukaryotes, meiotic chromosome function, and therefore fertility, requires cohesin complexes containing meiosis-specific kleisin subunits: REC8 and RAD21L in mammals and REC-8 and COH-3/4 in Caenorhabditis elegans. How these complexes perform the multiple functions of cohesin during meiosis and whether this involves different modes of DNA binding or dynamic association with chromosomes is poorly understood. Combining time-resolved methods of protein removal with live imaging and exploiting the temporospatial organisation of the C. elegans germline, we show that REC-8 complexes provide sister chromatid cohesion (SCC) and DNA repair, while COH-3/4 complexes control higher-order chromosome structure. High-abundance COH-3/4 complexes associate dynamically with individual chromatids in a manner dependent on cohesin loading (SCC-2) and removal (WAPL-1) factors. In contrast, low-abundance REC-8 complexes associate stably with chromosomes, tethering sister chromatids from S-phase until the meiotic divisions. Our results reveal that kleisin identity determines the function of meiotic cohesin by controlling the mode and regulation of cohesin-DNA association, and are consistent with a model in which SCC and DNA looping are performed by variant cohesin complexes that coexist on chromosomes.


Assuntos
Caenorhabditis elegans , Proteínas Cromossômicas não Histona , Segregação de Cromossomos , Animais , Caenorhabditis elegans/genética , Proteínas de Ciclo Celular , Cromátides , Proteínas Cromossômicas não Histona/genética , Coesinas
2.
Front Cell Dev Biol ; 11: 1147610, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37181752

RESUMO

In eutherian mammals, hundreds of programmed DNA double-strand breaks (DSBs) are generated at the onset of meiosis. The DNA damage response is then triggered. Although the dynamics of this response is well studied in eutherian mammals, recent findings have revealed different patterns of DNA damage signaling and repair in marsupial mammals. To better characterize these differences, here we analyzed synapsis and the chromosomal distribution of meiotic DSBs markers in three different marsupial species (Thylamys elegans, Dromiciops gliorides, and Macropus eugenii) that represent South American and Australian Orders. Our results revealed inter-specific differences in the chromosomal distribution of DNA damage and repair proteins, which were associated with differing synapsis patterns. In the American species T. elegans and D. gliroides, chromosomal ends were conspicuously polarized in a bouquet configuration and synapsis progressed exclusively from the telomeres towards interstitial regions. This was accompanied by sparse H2AX phosphorylation, mainly accumulating at chromosomal ends. Accordingly, RAD51 and RPA were mainly localized at chromosomal ends throughout prophase I in both American marsupials, likely resulting in reduced recombination rates at interstitial positions. In sharp contrast, synapsis initiated at both interstitial and distal chromosomal regions in the Australian representative M. eugenii, the bouquet polarization was incomplete and ephemeral, γH2AX had a broad nuclear distribution, and RAD51 and RPA foci displayed an even chromosomal distribution. Given the basal evolutionary position of T. elegans, it is likely that the meiotic features reported in this species represent an ancestral pattern in marsupials and that a shift in the meiotic program occurred after the split of D. gliroides and the Australian marsupial clade. Our results open intriguing questions about the regulation and homeostasis of meiotic DSBs in marsupials. The low recombination rates observed at the interstitial chromosomal regions in American marsupials can result in the formation of large linkage groups, thus having an impact in the evolution of their genomes.

3.
J Cell Sci ; 135(13)2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35694956

RESUMO

Chromosome segregation requires that centromeres properly attach to spindle microtubules. This essential step regulates the accuracy of cell division and must therefore be precisely regulated. One of the main centromeric regulatory signaling pathways is the haspin-H3T3ph-chromosomal passenger complex (CPC) cascade, which is responsible for the recruitment of the CPC to the centromeres. During mitosis, the haspin kinase phosphorylates histone H3 at threonine 3 (H3T3ph), an essential epigenetic mark that recruits the CPC, in which the catalytic component is Aurora B kinase (AURKB). However, the centromeric haspin-H3T3ph-CPC pathway remains largely uncharacterized in mammalian male meiosis. We have analyzed haspin functions by either its chemical inhibition with LDN-192960 in cultured spermatocytes, or the ablation of the Haspin gene in Haspin-/- mice. Our studies suggest that haspin kinase activity is required for proper chromosome congression both during meiotic divisions and for the recruitment of Aurora B and kinesin MCAK (also known as KIF2C) to meiotic centromeres. However, the absence of H3T3ph histone mark does not alter borealin (or CDCA8) and SGO2 centromeric localization. These results add new and relevant information regarding the regulation of the haspin-H3T3ph-CPC pathway and centromere function during meiosis.


Assuntos
Aurora Quinase B , Segregação de Cromossomos , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas Serina-Treonina Quinases , Animais , Aurora Quinase B/genética , Aurora Quinase B/metabolismo , Proteínas de Ciclo Celular/metabolismo , Centrômero/metabolismo , Histonas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Cinesinas/genética , Masculino , Mamíferos/metabolismo , Meiose/genética , Camundongos , Mitose , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Treonina/metabolismo
4.
Cells ; 12(1)2022 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-36611937

RESUMO

Cilia are hair-like projections of the plasma membrane with an inner microtubule skeleton known as axoneme. Motile cilia and flagella beat to displace extracellular fluids, playing important roles in the airways and reproductive system. On the contrary, primary cilia function as cell-type-dependent sensory organelles, detecting chemical, mechanical, or optical signals from the extracellular environment. Cilia dysfunction is associated with genetic diseases called ciliopathies and with some types of cancer. Cilia have been recently identified in zebrafish gametogenesis as an important regulator of bouquet conformation and recombination. However, there is little information about the structure and functions of cilia in mammalian meiosis. Here we describe the presence of cilia in male mouse meiotic cells. These solitary cilia formed transiently in 20% of zygotene spermatocytes and reached considerable lengths (up to 15-23 µm). CEP164 and CETN3 localization studies indicated that these cilia emanate from the mother centriole prior to centrosome duplication. In addition, the study of telomeric TFR2 suggested that cilia are not directly related to the bouquet conformation during early male mouse meiosis. Instead, based on TEX14 labeling of intercellular bridges in spermatocyte cysts, we suggest that mouse meiotic cilia may have sensory roles affecting cyst function during prophase I.


Assuntos
Centríolos , Cílios , Camundongos , Masculino , Animais , Feminino , Humanos , Centríolos/metabolismo , Cílios/metabolismo , Centrossomo/metabolismo , Prófase Meiótica I , Peixe-Zebra , Mães , Meiose , Mamíferos , Fatores de Transcrição/metabolismo
5.
Cells ; 10(9)2021 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-34571960

RESUMO

Meiosis involves a series of specific chromosome events, namely homologous synapsis, recombination, and segregation. Disruption of either recombination or synapsis in mammals results in the interruption of meiosis progression during the first meiotic prophase. This is usually accompanied by a defective transcriptional inactivation of the X and Y chromosomes, which triggers a meiosis breakdown in many mutant models. However, epigenetic changes and transcriptional regulation are also expected to affect autosomes. In this work, we studied the dynamics of epigenetic markers related to chromatin silencing, transcriptional regulation, and meiotic sex chromosome inactivation throughout meiosis in knockout mice for genes encoding for recombination proteins SPO11, DMC1, HOP2 and MLH1, and the synaptonemal complex proteins SYCP1 and SYCP3. These models are defective in recombination and/or synapsis and promote apoptosis at different stages of progression. Our results indicate that impairment of recombination and synapsis alter the dynamics and localization pattern of epigenetic marks, as well as the transcriptional regulation of both autosomes and sex chromosomes throughout prophase-I progression. We also observed that the morphological progression of spermatocytes throughout meiosis and the dynamics of epigenetic marks are processes that can be desynchronized upon synapsis or recombination alteration. Moreover, we detected an overlap of early and late epigenetic signatures in most mutants, indicating that the normal epigenetic transitions are disrupted. This can alter the transcriptional shift that occurs in spermatocytes in mid prophase-I and suggest that the epigenetic regulation of sex chromosomes, but also of autosomes, is an important factor in the impairment of meiosis progression in mammals.


Assuntos
Pareamento Cromossômico/genética , Epigênese Genética/genética , Mamíferos/genética , Meiose/genética , Proteínas Recombinantes/genética , Recombinação Genética/genética , Animais , Apoptose/genética , Marcadores Genéticos/genética , Masculino , Camundongos , Cromossomos Sexuais/genética , Espermatócitos/fisiologia , Transcrição Gênica/genética
6.
Genes (Basel) ; 12(9)2021 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-34573416

RESUMO

X and Y chromosomes in mammals are different in size and gene content due to an evolutionary process of differentiation and degeneration of the Y chromosome. Nevertheless, these chromosomes usually share a small region of homology, the pseudoautosomal region (PAR), which allows them to perform a partial synapsis and undergo reciprocal recombination during meiosis, which ensures their segregation. However, in some mammalian species the PAR has been lost, which challenges the pairing and segregation of sex chromosomes in meiosis. The African pygmy mouse Mus mattheyi shows completely differentiated sex chromosomes, representing an uncommon evolutionary situation among mouse species. We have performed a detailed analysis of the location of proteins involved in synaptonemal complex assembly (SYCP3), recombination (RPA, RAD51 and MLH1) and sex chromosome inactivation (γH2AX) in this species. We found that neither synapsis nor chiasmata are found between sex chromosomes and their pairing is notably delayed compared to autosomes. Interestingly, the Y chromosome only incorporates RPA and RAD51 in a reduced fraction of spermatocytes, indicating a particular DNA repair dynamic on this chromosome. The analysis of segregation revealed that sex chromosomes are associated until metaphase-I just by a chromatin contact. Unexpectedly, both sex chromosomes remain labelled with γH2AX during first meiotic division. This chromatin contact is probably enough to maintain sex chromosome association up to anaphase-I and, therefore, could be relevant to ensure their reductional segregation. The results presented suggest that the regulation of both DNA repair and epigenetic modifications in the sex chromosomes can have a great impact on the divergence of sex chromosomes and their proper transmission, widening our understanding on the relationship between meiosis and the evolution of sex chromosomes in mammals.


Assuntos
Pareamento Cromossômico/genética , Evolução Molecular , Meiose/genética , Cromossomos Sexuais/fisiologia , Animais , Segregação de Cromossomos/genética , Feminino , Cariótipo , Cariotipagem , Masculino , Mamíferos/genética , Camundongos
7.
Elife ; 102021 06 25.
Artigo em Inglês | MEDLINE | ID: mdl-34170818

RESUMO

Normal function of the placenta depends on the earliest developmental stages when trophoblast cells differentiate and invade into the endometrium to establish the definitive maternal-fetal interface. Previously, we identified the ubiquitously expressed tumour suppressor BRCA1-associated protein 1 (BAP1) as a central factor of a novel molecular node controlling early mouse placentation. However, functional insights into how BAP1 regulates trophoblast biology are still missing. Using CRISPR/Cas9 knockout and overexpression technology in mouse trophoblast stem cells, here we demonstrate that the downregulation of BAP1 protein is essential to trigger epithelial-mesenchymal transition (EMT) during trophoblast differentiation associated with a gain of invasiveness. Moreover, we show that the function of BAP1 in suppressing EMT progression is dependent on the binding of BAP1 to additional sex comb-like (ASXL1/2) proteins to form the polycomb repressive deubiquitinase (PR-DUB) complex. Finally, both endogenous expression patterns and BAP1 overexpression experiments in human trophoblast stem cells suggest that the molecular function of BAP1 in regulating trophoblast differentiation and EMT progression is conserved in mice and humans. Our results reveal that the physiological modulation of BAP1 determines the invasive properties of the trophoblast, delineating a new role of the BAP1 PR-DUB complex in regulating early placentation.


Assuntos
Transição Epitelial-Mesenquimal/genética , Proteínas Repressoras/genética , Proteínas Supressoras de Tumor/genética , Ubiquitina Tiolesterase/genética , Animais , Diferenciação Celular/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas Repressoras/metabolismo , Trofoblastos/fisiologia , Proteínas Supressoras de Tumor/metabolismo , Ubiquitina Tiolesterase/metabolismo
8.
EMBO Rep ; 22(4): e51030, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33615693

RESUMO

Cell division requires the regulation of karyokinesis and cytokinesis, which includes an essential role of the achromatic spindle. Although the functions of centrosomes are well characterised in somatic cells, their role during vertebrate spermatogenesis remains elusive. We have studied the dynamics of the meiotic centrosomes in male mouse during both meiotic divisions. Results show that meiotic centrosomes duplicate twice: first duplication occurs in the leptotene/zygotene transition, while the second occurs in interkinesis. The maturation of duplicated centrosomes during the early stages of prophase I and II are followed by their separation and migration to opposite poles to form bipolar spindles I and II. The study of the genetic mouse model Plk1(Δ/Δ) indicates a central role of Polo-like kinase 1 in pericentriolar matrix assembly, in centrosome maturation and migration, and in the formation of the bipolar spindles during spermatogenesis. In addition, in vitro inhibition of Polo-like kinase 1 and Aurora A in organotypic cultures of seminiferous tubules points out to a prominent role of both kinases in the regulation of the formation of meiotic bipolar spindles.


Assuntos
Proteínas de Ciclo Celular , Centrossomo , Animais , Proteínas de Ciclo Celular/genética , Masculino , Meiose , Camundongos , Proteínas Serina-Treonina Quinases , Proteínas Proto-Oncogênicas/genética , Fuso Acromático , Quinase 1 Polo-Like
9.
PLoS Genet ; 16(11): e1008959, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33180767

RESUMO

Sex chromosomes of eutherian mammals are highly different in size and gene content, and share only a small region of homology (pseudoautosomal region, PAR). They are thought to have evolved through an addition-attrition cycle involving the addition of autosomal segments to sex chromosomes and their subsequent differentiation. The events that drive this process are difficult to investigate because sex chromosomes in almost all mammals are at a very advanced stage of differentiation. Here, we have taken advantage of a recent translocation of an autosome to both sex chromosomes in the African pygmy mouse Mus minutoides, which has restored a large segment of homology (neo-PAR). By studying meiotic sex chromosome behavior and identifying fully sex-linked genetic markers in the neo-PAR, we demonstrate that this region shows unequivocal signs of early sex-differentiation. First, synapsis and resolution of DNA damage intermediates are delayed in the neo-PAR during meiosis. Second, recombination is suppressed or largely reduced in a large portion of the neo-PAR. However, the inactivation process that characterizes sex chromosomes during meiosis does not extend to this region. Finally, the sex chromosomes show a dual mechanism of association at metaphase-I that involves the formation of a chiasma in the neo-PAR and the preservation of an ancestral achiasmate mode of association in the non-homologous segments. We show that the study of meiosis is crucial to apprehend the onset of sex chromosome differentiation, as it introduces structural and functional constrains to sex chromosome evolution. Synapsis and DNA repair dynamics are the first processes affected in the incipient differentiation of X and Y chromosomes, and they may be involved in accelerating their evolution. This provides one of the very first reports of early steps in neo-sex chromosome differentiation in mammals, and for the first time a cellular framework for the addition-attrition model of sex chromosome evolution.


Assuntos
Meiose/genética , Camundongos/genética , Diferenciação Sexual/genética , Animais , Eutérios/genética , Feminino , Masculino , Mamíferos/genética , Regiões Pseudoautossômicas , Cromossomos Sexuais/genética , Translocação Genética/genética , Cromossomo X/genética , Cromossomo Y/genética
10.
Metas enferm ; 18(4): 56-61, mayo 2015. tab, graf
Artigo em Espanhol | IBECS | ID: ibc-140625

RESUMO

OBJETIVO: determinar la cobertura vacunal de la población médica del Hospital Juan Ramón Jiménez (HJRJ) de Huelva y analizarlos motivos que les lleva a realizar o no la profilaxis. MATERIAL Y MÉTODO: estudio descriptivo transversal sobre 126 profesionales médicos del HJRJ seleccionados mediante muestreo aleatorio estratificado ponderado en función del servicio. Se empleó un cuestionario autoadministrado de elaboración propia. Para el análisis bivariante con factores sociodemográficos y laborales se realizó la prueba de Ji-cuadrado. RESULTADOS: el 33,3% de los participantes se vacunó de la gripe en la temporada 2012/13, siendo el mayor motivo (85,7%) de la vacunación la 'autoprotección', y el "olvido" el principal motivo (41,5%) de la no vacunación. El 80,9% pensaba que sí es efectiva la vacuna de la gripe, dentro de los cuales solo el 41,2% recibió la inmunización (p= 0,001). No se evidenció asociación con significación estadística entre la vacunación y las variables sociodemográficas y laborales. CONCLUSIONES: es necesario destacar la problemática del bajo porcentaje de vacunación antigripal entre la población médica estudiada, cuestión que puede llegar a afectar notablemente a la salud de la población con la que trabajan. Para mejorar los datos se precisaría altos niveles de información y facilitar el acceso a la vacuna


OBJECTIVE: to determine the vaccination coverage in the medical population of the Hospital Juan Ramón Jiménez (HJRJ) in Huelva, and to analyze the reasons which leads them to conduct prophylaxis or not. MATERIALS AND METHODS: transversal descriptive study on126 HJRJ medical professionals, selected through stratified random sampling, based on each department. A self-administered questionnaire was used, which had been self-prepared. The Chisquare test was conducted for bivariate analysis with sociodemographic and work-related factors. RESULTS: 33.3% of participants received the flu vaccination during the 2012/13 season, with 'self-protection' as the main reason (85.7%) for vaccination, and "oversight" the main reason(41.5%) for lack of vaccination. 80.9% of participants considered the vaccine to be effective; out of these, only 41.2% received the vaccination (p= 0.001). There was no evidence of association with statistical significance between vaccination and sociodemographic and work-related variables. CONCLUSIONS: it is necessary to highlight the issue of the low percentage of anti-flu vaccination among the medical population studied. This is a matter which might even have a noticeable impact on the health of the population they are working with. In order to improve these data, it would be necessary to provide high levels of information, and easier access to the vaccine


Assuntos
Humanos , Cobertura Vacinal , Vacinação/estatística & dados numéricos , Influenza Humana/prevenção & controle , Pessoal de Saúde/estatística & dados numéricos , Doenças Transmissíveis/epidemiologia , Controle de Doenças Transmissíveis/métodos , Estudos Transversais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...