Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 149: 110498, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31430665

RESUMO

Spatial and temporal variability of mercury concentrations in sediments was evaluated in 210Pb-dated sediment cores from offshore and intertidal areas in the southern Gulf of Mexico. In offshore cores, mercury concentrations were comparable (11.2-69.2 ng g-1), and intermediate between concentrations in intertidal cores from the eastern (6.0-34.4 ng g-1) and the western (34.9-137.7 ng g-1) inlets of Términos Lagoon. The enrichment factor (EF) indicated minimal contamination (EF < 2) in most offshore cores, whereas in some intertidal cores steadily increasing mercury enrichment and fluxes were observed along the past century. No evidence of oil industry related mercury contamination was found, as the minor but increasing enrichment in intertidal cores is most likely related to land-derived sources such as catchment eroded soils and waste water runoff. Results highlight the importance to control catchment erosion and untreated sewage releases to reduce mercury loadings to the coastal zone.


Assuntos
Monitoramento Ambiental/métodos , Sedimentos Geológicos/química , Mercúrio/análise , Solo/química , Poluentes Químicos da Água/análise , Golfo do México , Análise Espaço-Temporal
2.
Sci Total Environ ; 630: 1628-1640, 2018 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-29554779

RESUMO

Coastal vegetated habitats can be important sinks of organic carbon (Corg) and mitigate global warming by sequestering significant quantities of atmospheric CO2 and storing sedimentary Corg for long periods, although their Corg burial and storage capacity may be affected by on-going sea level rise and human intervention. Geochemical data from published 210Pb-dated sediment cores, collected from low-energy microtidal coastal wetlands in El Salvador (Jiquilisco Bay) and in Mexico (Salada Lagoon; Estero de Urias Lagoon; Sian Ka'an Biosphere Reserve) were revisited to assess temporal changes (within the last 100years) of Corg concentrations, storage and burial rates in tropical salt marshes under the influence of sea level rise and contrasting anthropization degree. Grain size distribution was used to identify hydrodynamic changes, and δ13C to distinguish terrigenous sediments from those accumulated under the influence of marine transgression. Although the accretion rate ranges in all sediment records were comparable, Corg concentrations (0.2-30%), stocks (30-465Mgha-1, by extrapolation to 1m depth), and burial rates (3-378gm-2year-1) varied widely within and among the study areas. However, in most sites sea level rise decreased Corg concentrations and stocks in sediments, but increased Corg burial rates. Lower Corg concentrations were attributed to the input of reworked marine particles, which contribute with a lower amount of Corg than terrigenous sediments; whereas higher Corg burial rates were driven by higher mass accumulation rates, influenced by increased flooding and human interventions in the surroundings. Corg accumulation and long-term preservation in tropical salt marshes can be as high as in mangrove or temperate salt marsh areas and, besides the reduction of Corg stocks by ongoing sea level rise, the disturbance of the long-term buried Corg inventories might cause high CO2 releases, for which they must be protected as a part of climate change mitigation efforts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...