Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Circ Res ; 125(2): 170-183, 2019 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-31145021

RESUMO

RATIONALE: RBPs (RNA binding proteins) play critical roles in the cell by regulating mRNA transport, splicing, editing, and stability. The RBP SRSF3 (serine/arginine-rich splicing factor 3) is essential for blastocyst formation and for proper liver development and function. However, its role in the heart has not been explored. OBJECTIVE: To investigate the role of SRSF3 in cardiac function. METHODS AND RESULTS: Cardiac SRSF3 expression was high at mid gestation and decreased during late embryonic development. Mice lacking SRSF3 in the embryonic heart showed impaired cardiomyocyte proliferation and died in utero. In the adult heart, SRSF3 expression was reduced after myocardial infarction, suggesting a possible role in cardiac homeostasis. To determine the role of this RBP in the adult heart, we used an inducible, cardiomyocyte-specific SRSF3 knockout mouse model. After SRSF3 depletion in cardiomyocytes, mice developed severe systolic dysfunction that resulted in death within 8 days. RNA-Seq analysis revealed downregulation of mRNAs encoding sarcomeric and calcium handling proteins. Cardiomyocyte-specific SRSF3 knockout mice also showed evidence of alternative splicing of mTOR (mammalian target of rapamycin) mRNA, generating a shorter protein isoform lacking catalytic activity. This was associated with decreased phosphorylation of 4E-BP1 (eIF4E-binding protein 1), a protein that binds to eIF4E (eukaryotic translation initiation factor 4E) and prevents mRNA decapping. Consequently, we found increased decapping of mRNAs encoding proteins involved in cardiac contraction. Decapping was partially reversed by mTOR activation. CONCLUSIONS: We show that cardiomyocyte-specific loss of SRSF3 expression results in decapping of critical mRNAs involved in cardiac contraction. The molecular mechanism underlying this effect likely involves the generation of a short mTOR isoform by alternative splicing, resulting in reduced 4E-BP1 phosphorylation. The identification of mRNA decapping as a mechanism of systolic heart failure may open the way to the development of urgently needed therapeutic tools.


Assuntos
Miócitos Cardíacos/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Disfunção Ventricular/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/fisiologia , Processamento Pós-Transcricional do RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Processamento de Serina-Arginina/metabolismo , Sístole , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Disfunção Ventricular/metabolismo
3.
Cardiovasc Res ; 113(10): 1113-1123, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28472392

RESUMO

AIMS: Heart failure (HF) has become an epidemic and constitutes a major medical, social, and economic problem worldwide. Despite advances in medical treatment, HF prognosis remains poor. The development of efficient therapies is hampered by the lack of appropriate animal models in which HF can be reliably determined, particularly in mice. The development of HF in mice is often assumed based on the presence of cardiac dysfunction, but HF itself is seldom proved. Lung ultrasound (LUS) has become a helpful tool for lung congestion assessment in patients at all stages of HF. We aimed to apply this non-invasive imaging tool to evaluate HF in mouse models of both systolic and diastolic dysfunction. METHODS AND RESULTS: We used LUS to study HF in a mouse model of systolic dysfunction, dilated cardiomyopathy, and in a mouse model of diastolic dysfunction, diabetic cardiomyopathy. LUS proved to be a reliable and reproducible tool to detect pulmonary congestion in mice. The combination of LUS and echocardiography allowed discriminating those mice that develop HF from those that do not, even in the presence of evident cardiac dysfunction. The study showed that LUS can be used to identify the onset of HF decompensation and to evaluate the efficacy of therapies for this syndrome. CONCLUSIONS: This novel approach in mouse models of cardiac disease enables for the first time to adequately diagnose HF non-invasively in mice with preserved or reduced ejection fraction, and will pave the way to a better understanding of HF and to the development of new therapeutic approaches.


Assuntos
Cardiomiopatia Dilatada/diagnóstico por imagem , Cardiomiopatias Diabéticas/diagnóstico por imagem , Insuficiência Cardíaca/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Derrame Pleural/diagnóstico por imagem , Edema Pulmonar/diagnóstico por imagem , Pesquisa Translacional Biomédica/métodos , Ultrassonografia/métodos , Função Ventricular Esquerda , Animais , Cardiomiopatia Dilatada/complicações , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatias Diabéticas/complicações , Cardiomiopatias Diabéticas/fisiopatologia , Diástole , Modelos Animais de Doenças , Ecocardiografia Doppler de Pulso , Insuficiência Cardíaca/etiologia , Insuficiência Cardíaca/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Derrame Pleural/etiologia , Derrame Pleural/fisiopatologia , Valor Preditivo dos Testes , Edema Pulmonar/etiologia , Edema Pulmonar/fisiopatologia , Reprodutibilidade dos Testes , Volume Sistólico , Sístole , Função Ventricular Direita
4.
Cell Chem Biol ; 23(11): 1372-1382, 2016 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-27746127

RESUMO

Embryonic stem cells (ESC) have the potential to generate all the cell lineages that form the body. However, the molecular mechanisms underlying ESC differentiation and especially the role of alternative splicing in this process remain poorly understood. Here, we show that the alternative splicing regulator MBNL1 promotes generation of the atypical calcineurin Aß variant CnAß1 in mouse ESCs (mESC). CnAß1 has a unique C-terminal domain that drives its localization mainly to the Golgi apparatus by interacting with Cog8. CnAß1 regulates the intracellular localization and activation of the mTORC2 complex. CnAß1 knockdown results in delocalization of mTORC2 from the membrane to the cytoplasm, inactivation of the AKT/GSK3ß/ß-catenin signaling pathway, and defective mesoderm specification. In summary, here we unveil the structural basis for the mechanism of action of CnAß1 and its role in the differentiation of mESCs to the mesodermal lineage.


Assuntos
Calcineurina/metabolismo , Células-Tronco Embrionárias Murinas/citologia , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Calcineurina/análise , Diferenciação Celular , Linhagem Celular , Complexo de Golgi/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Complexos Multiproteicos/análise , Transdução de Sinais , Serina-Treonina Quinases TOR/análise
5.
Cardiovasc Res ; 109(1): 67-78, 2016 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-26260798

RESUMO

AIMS: After myocardial infarction (MI), extensive remodelling of the extracellular matrix contributes to scar formation. While aiming to preserve tissue integrity, this fibrotic response is also associated with adverse events, including a markedly increased risk of heart failure, ventricular arrhythmias, and sudden cardiac death. Cardiac fibrosis is characterized by extensive deposition of collagen and also by increased stiffness as a consequence of enhanced collagen cross-linking. Members of the lysyl oxidase (LOX) family of enzymes are responsible for the formation of collagen cross-links. This study investigates the contribution of LOX family members to the heart response to MI. METHODS AND RESULTS: Experimental MI was induced in C57BL/6 mice by permanent ligation of the left anterior descending coronary artery. The expression of LOX isoforms (LOX and LOXL1-4) was strongly increased upon MI, and this response was accompanied by a significant accumulation of mature collagen fibres in the infarcted area. LOX expression was observed in areas of extensive remodelling, partially overlapping with α-smooth muscle actin-expressing myofibroblasts. Tumour growth factor-ß as well as hypoxia-activated pathways contributed to the induction of LOX expression in cardiac fibroblasts. Finally, in vivo post-infarction treatment with the broadband LOX inhibitor ß-aminopropionitrile or, selectively, with a neutralizing antibody against the canonical LOX isoform attenuated collagen accumulation and maturation and also resulted in reduced ventricular dilatation and improved cardiac function. CONCLUSION: LOX family members contribute significantly to the detrimental effects of cardiac remodelling, highlighting LOX inhibition as a potential therapeutic strategy for post-infarction recovery.


Assuntos
Matriz Extracelular/fisiologia , Coração/fisiopatologia , Infarto do Miocárdio/enzimologia , Proteína-Lisina 6-Oxidase/biossíntese , Animais , Hipóxia Celular , Células Cultivadas , Indução Enzimática , Camundongos , Camundongos Endogâmicos C57BL , Infarto do Miocárdio/fisiopatologia , Proteína-Lisina 6-Oxidase/antagonistas & inibidores , Proteína-Lisina 6-Oxidase/genética , Fator de Crescimento Transformador beta/farmacologia
6.
Circ Cardiovasc Genet ; 8(5): 643-52, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26175529

RESUMO

BACKGROUND: Mutations in sarcomeric and cytoskeletal proteins are a major cause of hereditary cardiomyopathies, but our knowledge remains incomplete as to how the genetic defects execute their effects. METHODS AND RESULTS: We used cysteine and glycine-rich protein 3, a known cardiomyopathy gene, in a yeast 2-hybrid screen and identified zinc-finger and BTB domain-containing protein 17 (ZBTB17) as a novel interacting partner. ZBTB17 is a transcription factor that contains the peak association signal (rs10927875) at the replicated 1p36 cardiomyopathy locus. ZBTB17 expression protected cardiac myocytes from apoptosis in vitro and in a mouse model with cardiac myocyte-specific deletion of Zbtb17, which develops cardiomyopathy and fibrosis after biomechanical stress. ZBTB17 also regulated cardiac myocyte hypertrophy in vitro and in vivo in a calcineurin-dependent manner. CONCLUSIONS: We revealed new functions for ZBTB17 in the heart, a transcription factor that may play a role as a novel cardiomyopathy gene.


Assuntos
Cardiomiopatias/genética , Insuficiência Cardíaca/genética , Proteínas Nucleares/genética , Animais , Proteínas de Ligação a DNA , Coração/fisiologia , Humanos , Fatores de Transcrição Kruppel-Like/genética , Fatores de Transcrição Kruppel-Like/fisiologia , Proteínas com Domínio LIM/genética , Proteínas com Domínio LIM/metabolismo , Camundongos , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas Nucleares/fisiologia , Proteínas Inibidoras de STAT Ativados/genética , Proteínas Inibidoras de STAT Ativados/fisiologia , Ratos , Estresse Fisiológico , Técnicas de Cultura de Tecidos , Ubiquitina-Proteína Ligases
7.
Cardiovasc Res ; 102(3): 396-406, 2014 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-24667850

RESUMO

AIMS: Ventricular remodelling following myocardial infarction progressively leads to loss of contractile capacity and heart failure. Although calcineurin promotes maladaptive cardiac hypertrophy, we recently showed that the calcineurin splicing variant, CnAß1, has beneficial effects on the infarcted heart. However, whether this variant limits necrosis or improves remodelling is still unknown, precluding translation to the clinical arena. Here, we explored the effects and therapeutic potential of CnAß1 overexpression post-infarction. METHODS AND RESULTS: Double transgenic mice with inducible cardiomyocyte-specific overexpression of CnAß1 underwent left coronary artery ligation followed by reperfusion. Echocardiographic analysis showed depressed cardiac function in all infarcted mice 3 days post-infarction. Induction of CnAß1 overexpression 1 week after infarction improved function and reduced ventricular dilatation. CnAß1-overexpressing mice showed shorter, thicker scars, and reduced infarct expansion, accompanied by reduced myocardial remodelling. CnAß1 induced vascular endothelial growth factor (VEGF) expression in cardiomyocytes, which resulted in increased infarct vascularization. This paracrine angiogenic effect of CnAß1 was mediated by activation of the Akt/mammalian target of rapamycin pathway and VEGF. CONCLUSIONS: Our results indicate that CnAß1 exerts beneficial effects on the infarcted heart by promoting infarct vascularization and preventing infarct expansion. These findings emphasize the translational potential of CnAß1 for gene-based therapies.


Assuntos
Calcineurina/fisiologia , Terapia Genética , Infarto do Miocárdio/terapia , Remodelação Ventricular , Animais , Calcineurina/genética , Camundongos , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Neovascularização Fisiológica , Proteínas Proto-Oncogênicas c-akt/fisiologia , Splicing de RNA , Transdução de Sinais/fisiologia
8.
J Cardiovasc Transl Res ; 5(6): 814-26, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22915069

RESUMO

Follistatins are extracellular inhibitors of the TGF-ß family ligands including activin A, myostatin and bone morphogenetic proteins. Follistatin-like 3 (FSTL3) is a potent inhibitor of activin signalling and antagonises the cardioprotective role of activin A in the heart. FSTL3 expression is elevated in patients with heart failure and is upregulated in cardiomyocytes by hypertrophic stimuli, but its role in cardiac remodelling is largely unknown. Here, we show that the production of FSTL3 by cardiomyocytes contributes to the paracrine activation of cardiac fibroblasts, inducing changes in cell adhesion, promoting proliferation and increasing collagen production. We found that FSTL3 is necessary for this response and for the induction of cardiac fibrosis. However, full activation requires additional factors, and we identify connective tissue growth factor as a FSTL3 binding partner in this process. Together, our data unveil a novel mechanism of paracrine communication between cardiomyocytes and fibroblasts that may provide potential as a therapeutic target in heart remodelling.


Assuntos
Fibroblastos/metabolismo , Proteínas Relacionadas à Folistatina/metabolismo , Miócitos Cardíacos/metabolismo , Comunicação Parácrina , Proteínas/metabolismo , Animais , Adesão Celular , Proliferação de Células , Células Cultivadas , Técnicas de Cocultura , Colágeno/metabolismo , Fator de Crescimento do Tecido Conjuntivo/metabolismo , Modelos Animais de Doenças , Fibroblastos/patologia , Fibrose , Proteínas Relacionadas à Folistatina/deficiência , Proteínas Relacionadas à Folistatina/genética , Regulação da Expressão Gênica , Insuficiência Cardíaca/metabolismo , Insuficiência Cardíaca/patologia , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/patologia , Proteínas/genética , Ratos , Transdução de Sinais , Fatores de Tempo
9.
Circulation ; 123(24): 2838-47, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21632490

RESUMO

BACKGROUND: Calcineurin is a calcium-regulated phosphatase that plays a major role in cardiac hypertrophy. We previously described that alternative splicing of the calcineurin Aß (CnAß) gene generates the CnAß1 isoform, with a unique C-terminal region that is different from the autoinhibitory domain present in all other CnA isoforms. In skeletal muscle, CnAß1 is necessary for myoblast proliferation and stimulates regeneration, reducing fibrosis and accelerating the resolution of inflammation. Its role in the heart is currently unknown. METHODS AND RESULTS: We generated transgenic mice overexpressing CnAß1 in postnatal cardiomyocytes under the control of the α-myosin heavy chain promoter. In contrast to previous studies using an artificially truncated calcineurin, CnAß1 overexpression did not induce cardiac hypertrophy. Moreover, transgenic mice showed improved cardiac function and reduced scar formation after myocardial infarction, with reduced neutrophil and macrophage infiltration and decreased expression of proinflammatory cytokines. Immunoprecipitation and Western blot analysis showed interaction of CnAß1 with the mTOR complex 2 and activation of the Akt/SGK cardioprotective pathway in a PI3K-independent manner. In addition, gene expression profiling revealed that CnAß1 activated the transcription factor ATF4 downstream of the Akt/mTOR pathway to promote the amino acid biosynthesis program, to reduce protein catabolism, and to induce the antifibrotic and antiinflammatory factor growth differentiation factor 15, which protects the heart through Akt activation. CONCLUSIONS: Calcineurin Aß1 shows a unique mode of action that improves cardiac function after myocardial infarction, activating different cardioprotective pathways without inducing maladaptive hypertrophy. These features make CnAß1 an attractive candidate for the development of future therapeutic approaches.


Assuntos
Calcineurina/genética , Coração/fisiologia , Contração Miocárdica/fisiologia , Infarto do Miocárdio/genética , Infarto do Miocárdio/fisiopatologia , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Animais , Calcineurina/metabolismo , Cardiomegalia/genética , Cardiomegalia/fisiopatologia , Fibrose , Perfilação da Expressão Gênica , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/metabolismo , Miocardite/genética , Miocardite/metabolismo , Miocardite/fisiopatologia , Miocárdio/metabolismo , Miocárdio/patologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/metabolismo , Isoformas de Proteínas/genética , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...