Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 110: 85-96, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35364258

RESUMO

Spermatozoa require the capacitation, a series of biochemical events, to perform fertilization. Many toxic compounds can interfere in this process, including perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA), which belong to the perfluoroalkyl substances (PFAS). Since both substances are found in many everyday materials and are highly persistent, they accumulate in organisms where they have been associated with fertility problems. This study analyzes the effects of PFOS and PFOA on the functionality of boar spermatozoa, and changes in the plasma membrane (PM) during capacitation. The median lethal concentrations (LC50) of PFOS and PFOA were 460 and 1894 µM, respectively, while the mean inhibitory concentrations of capacitation (ICC50) were 274 µM and 1458 µM, respectively. The ICC50 of PFOA was insufficient to reduce the capacitation, but 950 µM (½ LC50) of PFOA and the ICC50 of PFOS significantly reduced the number of capacitated spermatozoa. PFOS and PFOA also impeded the progesterone (P4)-induced acrosomal reaction (iAR). These effects occur despite the accumulation of [Ca2+]i under capacitating conditions. The accumulation of [Ca2+]i produces saturation, which prevents its entry through ionophore A23187 and P4 in the presence of PFOS. Membrane potential (Emv) was deregulated. Both PFAS affected lipid membrane conductance mediated by valinomycin. The spermatozoa presented 49% and 47% of membrane dysfunction with PFOS and PFOA, respectively. By causing membrane damage, both substances prevented the release of cholesterol and altered the organization of membrane microdomains (MMDs). Data indicate that both PFAS caused alterations in PM functionality.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Ácidos Alcanossulfônicos/toxicidade , Animais , Caprilatos/toxicidade , Membrana Celular , Fluorocarbonos/toxicidade , Masculino , Espermatozoides , Suínos
2.
World J Mens Health ; 39(4): 740-749, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33474848

RESUMO

PURPOSE: Andrology research has evolved notoriously in the latest years, particularly since male factor contribution to couple infertility has been undoubtedly demonstrated. However, sperm function investigations results are sometimes contradictory, probably as a result of the use of different sperm processing techniques. In this work, we underwent a systematic functional comparison of human sperm samples simultaneously processed by swim-up and density gradient centrifugation, which are the preferred sperm processing methods used in basic and clinical laboratories. MATERIALS AND METHODS: To compare functional characteristics of sperm isolated by swim-up and density gradient centrifugation followed by incubation at different times under capacitating conditions. RESULTS: Semen samples processed in parallel by these two procedures resulted in sperm preparations with significant differences in redox state, spontaneous intracellular calcium oscillations, hyperactivation, protein tyrosine phosphorylation, and acrosome reaction responsivity to calcium ionophore. Such differences showed time-dependent specific patterns for spontaneous intracellular calcium oscillations, hyperactivation and protein tyrosine phosphorylation. Sperm retrieved by density gradient centrifugation showed more hyperactivation and tyrosine phosphorylation than swim-up sperm, suggesting a higher degree of capacitation. CONCLUSIONS: Our results account for functional differences observed in spermatozoa processed with these two methods and therefore may contribute to a better interpretation of outcomes obtained in different laboratories as well as to improve experimental designs aimed to study sperm physiology and fertility potential.

3.
Biochem Biophys Res Commun ; 483(2): 834-839, 2017 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-28063926

RESUMO

In order to fertilize, spermatozoa must undergo physiological and biochemical changes during their transit along the female reproductive tract before reaching and fusing with the oocyte, process known as capacitation. Sperm modifications associated with capacitation are modulated by their interaction with molecules present in the female reproductive tract. During the woman fertile window, some reproductive hormones reach their maximum concentrations in serum, such as the luteinizing hormone (LH). Since spermatozoa preparing to fertilize may be exposed to LH, the purpose of this work was to study the effects of this hormone on intracellular Ca2+ concentrations ([Ca2+]i), protein tyrosine phosphorylation, sperm motility and acrosome reaction under capacitating conditions. The results showed that LH increases the duration and amplitude of Ca2+ oscillations. Furthermore, motility analysis indicated that LH decreases rapid progressive motility and that sperm hyperactivation as well as several kinetic parameters augment in the presence of 0.5 and 1 µg/ml of the hormone. In addition, these two hormone concentrations also consistently promoted protein tyrosine phosphorylation. However, no effects on acrosome reaction were observed. In conclusion, the evidence indicates that LH modulates several sperm function variables involved in capacitation, suggesting that may have an important and unexplored role during human fertilization.


Assuntos
Hormônio Luteinizante/metabolismo , Capacitação Espermática/fisiologia , Reação Acrossômica/efeitos dos fármacos , Reação Acrossômica/fisiologia , Cálcio/metabolismo , Sinalização do Cálcio/efeitos dos fármacos , Feminino , Humanos , Hormônio Luteinizante/farmacologia , Masculino , Fosforilação , Fosfotirosina/metabolismo , Capacitação Espermática/efeitos dos fármacos , Motilidade dos Espermatozoides/efeitos dos fármacos , Motilidade dos Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...