RESUMO
The phylogenetic and functional diversities of microbial communities in tropical rainforests and how these differ from those of temperate communities remain poorly described but are directly related to the increased fluxes of greenhouse gases such as nitrous oxide (N2O) from the tropics. Toward closing these knowledge gaps, we analyzed replicated shotgun metagenomes representing distinct life zones and an elevation gradient from four locations in the Luquillo Experimental Forest (LEF), Puerto Rico. These soils had a distinct microbial community composition and lower species diversity compared to those of temperate grasslands or agricultural soils. In contrast to the overall distinct community composition, the relative abundances and nucleotide sequences of N2O reductases (nosZ) were highly similar between tropical forest and temperate soils. However, respiratory NO reductase (norB) was 2-fold more abundant in the tropical soils, which might be relatable to their greater N2O emissions. Nitrogen fixation (nifH) also showed higher relative abundance in rainforest than in temperate soils, i.e., 20% versus 0.1 to 0.3% of bacterial genomes in each soil type harbored the gene, respectively. Finally, unlike temperate soils, LEF soils showed little stratification with depth in the first 0 to 30 cm, with â¼45% of community composition differences explained solely by location. Collectively, these results advance our understanding of spatial diversity and metabolic repertoire of tropical rainforest soil communities and should facilitate future ecological studies of these ecosystems. IMPORTANCE Tropical rainforests are the largest terrestrial sinks of atmospheric CO2 and the largest natural source of N2O emissions, two greenhouse gases that are critical for the climate. The microbial communities of rainforest soils that directly or indirectly, through affecting plant growth, contribute to these fluxes remain poorly described by cultured-independent methods. To close this knowledge gap, the present study applied shotgun metagenomics to samples selected from three distinct life zones within the Puerto Rico rainforest. The results advance our understanding of microbial community diversity in rainforest soils and should facilitate future studies of natural or manipulated perturbations of these critical ecosystems.
Assuntos
Metagenoma , Ciclo do Nitrogênio , Floresta Úmida , Microbiologia do Solo , Metagenômica , Porto Rico , RNA Ribossômico 16SRESUMO
Dehalococcoides mccartyi strains KS and RC grow with 1,2-dichloropropane (1,2-D) as an electron acceptor in enrichment cultures derived from hydrocarbon-contaminated and pristine river sediments, respectively. Transcription, expression, enzymatic, and PCR analyses implicated the reductive dehalogenase gene dcpA in 1,2-D dichloroelimination to propene and inorganic chloride. Quantitative real-time PCR (qPCR) analyses demonstrated a D. mccartyi cell increase during growth with 1,2-D and suggested that both D. mccartyi strains carried a single dcpA gene copy per genome. D. mccartyi strain RC and strain KS produced 1.8 × 10(7) ± 0.1 × 10(7) and 1.4 × 10(7) ± 0.5 × 10(7) cells per µmol of propene formed, respectively. The dcpA gene was identified in 1,2-D-to-propene-dechlorinating microcosms established with sediment samples collected from different geographical locations in Europe and North and South America. Clone library analysis revealed two distinct dcpA phylogenetic clusters, both of which were captured by the dcpA gene-targeted qPCR assay, suggesting that the qPCR assay is useful for site assessment and bioremediation monitoring at 1,2-D-contaminated sites.