Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Proteomics ; 2(4): 413-21, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12164700

RESUMO

Despite the high sensitivity and relatively high tolerance for contaminants of matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) there is often a need to purify and concentrate the sample solution, especially after in-gel digestion of proteins separated by two-dimensional gel electrophoresis (2-DE). A silicon microextraction chip (SMEC) for sample clean-up and trace enrichment of peptides was manufactured and investigated. The microchip structure was used to trap reversed-phase chromatography media (POROS R2 beads) that facilitates sample purification/enrichment of contaminated and dilute samples prior to the MALDI-TOF MS analysis. The validity of the SMEC sample preparation technique was successfully investigated by performing analysis on a 10 nM peptide mixture containing 2 m urea in 0.1 m phosphate-buffered saline with MALDI-TOF MS. It is demonstrated that the microchip sample clean-up and enrichment of peptides can facilitate identification of proteins from 2-DE separations. The microchip structure was also used to trap beads immobilized with trypsin, thereby effectively becoming a microreactor for enzymatic digestion of proteins. This microreactor was used to generate a peptide map from a 100 nM bovine serum albumin sample.


Assuntos
Análise Serial de Proteínas , Proteoma/análise , Eletroforese em Gel Bidimensional , Enzimas Imobilizadas/química , Peptídeos/análise , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Reprodutibilidade dos Testes , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
2.
Proteomics ; 2(4): 422-9, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12164701

RESUMO

A recently introduced silicon microextraction chip (SMEC), used for on-line proteomic sample preparation, has proved to facilitate the process of protein identification by sample clean up and enrichment of peptides. It is demonstrated that a novel grid-SMEC design improves the operating characteristics for solid-phase microextraction, by reducing dispersion effects and thereby improving the sample preparation conditions. The structures investigated in this paper are treated both numerically and experimentally. The numerical approach is based on finite element analysis of the microfluidic flow in the microchip. The analysis is accomplished by use of the computational fluid dynamics-module FLOTRAN in the ANSYS software package. The modeling and analysis of the previously reported weir-SMEC design indicates some severe drawbacks, that can be reduced by changing the microextraction chip geometry to the grid-SMEC design. The overall analytical performance was thereby improved and also verified by experimental work. Matrix-assisted laser desorption/ionization mass spectra of model peptides extracted from both the weir-SMEC and the new grid-SMEC support the numerical analysis results. Further use of numerical modeling and analysis of the SMEC structures is also discussed and suggested in this work.


Assuntos
Análise Serial de Proteínas , Proteoma/análise , Miniaturização , Peptídeos/análise , Análise Serial de Proteínas/instrumentação , Análise Serial de Proteínas/métodos , Solventes/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA