Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nephrol Dial Transplant ; 38(10): 2109-2119, 2023 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36918205

RESUMO

This review summarizes the pathomorphological sequences of nephron loss in human diabetic nephropathy (DN). The relevant changes may be derived from two major derangements. First, a failure in the turnover of the glomerular basement membrane (GBM) based on an increased production of GBM components by podocytes and endothelial cells leading to the thickening of the GBM and accumulation of worn-out GBM in the mesangium. This failure may account for the direct pathway to glomerular compaction and sclerosis based on the continuous deposition of undegraded GBM material in the mesangium. Second, an increased leakiness together with an increased propensity of glomerular capillaries to proliferate leads to widespread plasma exudations. Detrimental are those that produce giant insudative spaces within Bowman's capsule, spreading around the entire glomerular circumference and along the glomerulo-tubular junction onto the tubule resulting in tubular obstruction and retroactively to glomerulosclerosis. Tubular atrophy and interstitial fibrosis develop secondarily by transfer of the glomerular damage onto the tubule. Interstitial fibrosis is locally initiated and apparently stimulated by degenerating tubular epithelia. This leads to a focal distribution of interstitial fibrosis and tubular atrophy accompanied by a varying interstitial mononuclear cell infiltration. Spreading of fibrotic areas between intact nephrons, much less to the glomerulus, has not been encountered.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/patologia , Células Endoteliais/metabolismo , Membrana Basal Glomerular/metabolismo , Fibrose , Atrofia/patologia , Diabetes Mellitus/patologia
2.
Am J Physiol Renal Physiol ; 321(5): F600-F616, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34541901

RESUMO

Following our previous reports on mesangial sclerosis and vascular proliferation in diabetic nephropathy (DN) (Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. Am J Physiol Renal Physiol 312: F1101-F1111, 2017; Löwen J, Gröne E, Gröne HJ, Kriz W. Am J Physiol Renal Physiol 317: F399-F410, 2019), we now describe the advanced stages of DN terminating in glomerular obsolescence and tubulointerstitial fibrosis based on a total of 918 biopsies. The structural aberrations emerged from two defects: 1) increased synthesis of glomerular basement membrane (GBM) components by podocytes and endothelial cells leading to an accumulation of GBM material in the mesangium and 2) a defect of glomerular vessels consisting of increased leakiness and an increased propensity to proliferate. Both defects may lead to glomerular degeneration. The progressing compaction of accumulated worn-out GBM material together with the retraction of podocytes out of the tuft and the collapse and hyalinosis of capillaries results in a shrunken tuft that fuses with Bowman's capsule (BC) to glomerular sclerosis. The most frequent pathway to glomerular decay starts with local tuft expansions that result in contacts of structurally intact podocytes to the parietal epithelium initiating the formation of tuft adhesions, which include the penetration of glomerular capillaries into BC. Exudation of plasma from such capillaries into the space between the parietal epithelium and its basement membrane causes the formation of insudative fluid accumulations within BC spreading around the glomerular circumference and, via the glomerulotubular junction, onto the tubule. Degeneration of the corresponding tubule develops secondarily to the glomerular damage, either due to cessation of filtration in cases of global sclerosis or due to encroachment of the insudative spaces. The degenerating tubules induce the proliferation of myofibroblasts resulting in interstitial fibrosis.NEW & NOTEWORTHY Based on analysis of 918 human biopsies, essential derangement in diabetic nephropathy consists of accumulation of worn-out glomerular basement membrane in the mesangium that may advance to global sclerosis. The most frequent pathway to nephron dropout starts with the penetration of glomerular capillaries into Bowman's capsule (BC), delivering an exudate into BC that spreads around the entire glomerular circumference and via the glomerulotubular junction onto the tubule, resulting in glomerular sclerosis and chronic tubulointerstitial damage.


Assuntos
Nefropatias Diabéticas/patologia , Glomerulonefrite/patologia , Néfrons/patologia , Biópsia , Cápsula Glomerular/patologia , Capilares/patologia , Permeabilidade Capilar , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Células Endoteliais/patologia , Fibrose , Membrana Basal Glomerular/patologia , Glomerulonefrite/metabolismo , Humanos , Microscopia Eletrônica de Transmissão , Neovascularização Patológica , Néfrons/metabolismo , Néfrons/ultraestrutura , Podócitos/patologia
3.
Am J Physiol Renal Physiol ; 317(2): F399-F410, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31141396

RESUMO

As shown in our previous paper (Kriz W, Löwen J, Federico G, van den Born J, Gröne E, Gröne HJ. Am J Physiol Renal Physiol 312: F1101-F1111, 2017), mesangial matrix expansion in diabetic nephropathy (DN) results for a major part from the accumulation of worn-out undegraded glomerular basement membrane material. Here, based on the reevaluation of >900 biopsies of DN, we show that this process continues with the progression of the disease finally leading to the herniation of the matrix-overloaded tuft through the glomerular entrance to the outside. This leads to severe changes in the glomerular surroundings, including a dissociation of the juxtaglomerular apparatus with displacement of the macula densa. The herniation is associated with a prominent outgrowth of glomerular vessels from the tuft. Mostly, these aberrant vessels are an abnormal type of arteriole with frequent intramural insudations of plasma. They spread into glomerular surroundings extending in intertubular and periglomerular spaces. Their formation is associated with elevated mRNA levels of vascular endothelial growth factor-A, angiopoietins 1 and 2, and the corresponding receptors. Functionally, these processes seem to compromise tubuloglomerular feedback-related functions and may be one factor why Na+-glucose cotransporter-2 inhibitors are not effective in advanced stages of DN.


Assuntos
Arteríolas/patologia , Nefropatias Diabéticas/patologia , Mesângio Glomerular/irrigação sanguínea , Sistema Justaglomerular/irrigação sanguínea , Neovascularização Patológica , Angiopoietina-1/genética , Angiopoietina-1/metabolismo , Angiopoietina-2/genética , Angiopoietina-2/metabolismo , Arteríolas/metabolismo , Nefropatias Diabéticas/genética , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Humanos , Receptor TIE-2/genética , Receptor TIE-2/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo
4.
Am J Physiol Renal Physiol ; 312(6): F1101-F1111, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28228399

RESUMO

Thickening of the glomerular basement membrane (GBM) and expansion of the mesangial matrix are hallmarks of diabetic nephropathy (DN), generally considered to emerge from different sites of overproduction: GBM components from podocytes and mesangial matrix from mesangial cells. Reevaluation of 918 biopsies with DN revealed strong evidence that these mechanisms are connected to each other, wherein excess GBM components fail to undergo degradation and are deposited in the mesangium. These data do not exclude that mesangial cells also synthesize components that contribute to the accumulation of matrix in the mesangium. Light, electron microscopic, immunofluorescence, and in situ hybridization studies clearly show that the thickening of the GBM is due not only to overproduction of components of the mature GBM (α3 and α5 chains of collagen IV and agrin) by podocytes but also to resumed increased synthesis of the α1 chain of collagen IV and of perlecan by endothelial cells usually seen during embryonic development. We hypothesize that these abnormal production mechanisms are caused by different processes: overproduction of mature GBM-components by the diabetic milieu and regression of endothelial cells to an embryonic production mode by decreased availability of mediators from podocytes.


Assuntos
Nefropatias Diabéticas/patologia , Membrana Basal Glomerular/ultraestrutura , Mesângio Glomerular/ultraestrutura , Podócitos/ultraestrutura , Agrina/análise , Autoantígenos/análise , Biópsia , Microambiente Celular , Colágeno Tipo IV/análise , Nefropatias Diabéticas/metabolismo , Progressão da Doença , Membrana Basal Glomerular/química , Mesângio Glomerular/química , Proteoglicanas de Heparan Sulfato/análise , Humanos , Imuno-Histoquímica , Microscopia Eletrônica de Transmissão , Podócitos/química , Esclerose
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...