Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Phys Condens Matter ; 29(43): 435002, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28829336

RESUMO

The interface between ZnO and Cu2O has been predicted to be a good candidate for use in thin film solar cells. However, the high predicted conversion efficiency has yet to be fully realized experimentally. To explore the underlying causes of this we investigate the interface between ZnO and Cu2O in magnetron sputtered samples. Two different sample geometries were made: In the first set thin layers of ZnO were deposited on Cu2O (type A), while in the second set the order was reversed (type B). Using x-ray photoelectron spectroscopy (XPS), an intermediate CuO layer was identified regardless of the order in which the Cu2O and ZnO layers were deposited. The presence of a CuO layer was supported by transmission electron microscopy (TEM) results. Changes in the electron hole screening conditions were observed in CuO near the interface with ZnO, manifested as changes in the relative peak-to-satellite ratio and the degree of asymmetric broadness in the Cu 2p peak. The suppression of the Cu 2p satellite characteristic of CuO may cause the CuO presence to be overlooked and cause errors in determinations of valence band offsets (VBOs). For the type A samples, we compare four different approaches to XPS-based determination of VBO and find that the most reliable results are obtained when the thin CuO layer and the altered screening conditions at the interface were taken into account. The VBOs were found to range between 2.5 eV and 2.8 eV. For the B type samples a reduction of the Cu 2p-LMM Auger parameter was found as compared to bulk Cu2O, indicative of quantum confinement in the Cu2O overlayer.

2.
J Phys Condens Matter ; 26(2): 025403, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24305568

RESUMO

Ab initio calculations of the solid-state diffusivity of solute atoms in bulk aluminium have previously been based on transition state theory (TST), employing transition state searches and systematic assessments of single jumps together with appropriate models of jump frequencies and correlation factors like the five-frequency model. This work compared TST benchmark predictions of diffusivities with first-principles molecular dynamics (FPMD). The TST calculations were performed at unprecedented high precision, including the temperature dependent entropy of vacancy formation which has not been included in previous studies of diffusion in Al; this led to improved agreement with experimental data. It was furthermore demonstrated that FPMD can yield sufficient statistics to predict the frequency of single jumps, and FPMD was used to successfully predict the macroscopic diffusivity of Si in Al. The latter is not possible in systems with higher activation energies, but it was demonstrated that FPMD in such cases can identify which jumps are prevalent for a given defect configuration. Thus, information from FPMD can be used to simplify the calculation of correlation terms, prefactors and effective transition barriers with TST significantly. This can be particularly important for the study of more complicated defect configurations, where the number of distinct jumps rapidly increases to be intractable by systematic methods.

3.
Ultramicroscopy ; 111(7): 847-53, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20832172

RESUMO

We refine two low-order structure factors of the skutterudite CoSb3 using convergent beam electron diffraction. The relatively large unit cell of this material causes the disks to overlap and introduces a series of challenges in the refinement procedure. These challenges and future work-arounds are discussed. The refined structure factors F200 and F600 are compared to X-ray diffraction and density functional calculated values, the latter calculated using two different functionals. Both relaxed and experimental lattice parameters are tested to explicitly highlight the impact of the lattice geometry and atomic position on the structure factors.


Assuntos
Antimônio/química , Cobalto/química , Cristalografia por Raios X/métodos , Elétrons , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Modelos Teóricos
4.
J Phys Condens Matter ; 21(24): 245503, 2009 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21693949

RESUMO

The electronic structure of Ni-X (X = B, S, P) alloys was studied using x-ray photoelectron spectroscopy, x-ray induced Auger electron spectroscopy and density functional theory. The spectroscopic data in the form of the Ni 2p shake-up satellite and the Ni 2p LMM, P 2p KLL and S 2p KLL Auger parameters combined with density of states (DOS) and charge difference plots suggest an overall charge transfer from the Ni sites towards the alloying addition sites. However, this is masked, with intra-atomic charge redistribution leading to an increased occupancy of the Ni 3d states in the alloys. The Ni 3d DOS shows strong similarity to that of Pt which is the best catalyst for hydrogen evolution.

5.
Micron ; 39(6): 685-9, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18042390

RESUMO

Skutterudites, with rattler atoms introduced in voids in the crystal unit cell, are promising thermoelectric materials. We modify the binary skutterudite with atomic content Co(8)P(24) in the cubic crystal unit cell by adding La as rattlers in all available voids and replacing Co by Fe to maintain charge balance, resulting in La(2)Fe(8)P(24). The intention is to leave the electronic structure unaltered while decreasing the thermal conductivity due to the presence of the rattlers. We compare the electronic structure of these two compounds by studying the L-edges of P and of the transition elements Co and Fe using electron energy loss spectroscopy (EELS). Our studies of the transition metal white lines show that the 3d electron count is similar for Co and Fe in these compounds. As elemental Fe has one electron less than Co, this supports the notion that each La atom donates three electrons. The L-edges of P in these two skutterudites are quite similar, signalling only minor differences in electronic structure. This is in reasonable agreement with density functional theory (DFT) calculations, and with our multiple scattering FEFF calculations of the near edge structure. However, our experimental plasmon energies and dielectric functions deviate considerably from predictions based on DFT calculations.


Assuntos
Metais/química , Espectroscopia de Perda de Energia de Elétrons/métodos , Estrutura Molecular , Termodinâmica
6.
Acta Crystallogr B ; 62(Pt 6): 972-8, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17108649

RESUMO

The crystal structure of Zr2NiD4.5 has been determined by a combination of synchrotron radiation powder X-ray diffraction, electron diffraction and powder neutron diffraction data. Deuterium ordering results in a triclinic supercell given by asuper=6.81560 (7), bsuper=8.85137 (9), csuper=8.88007 (10) A, alphasuper=79.8337 (8), betasuper=90.0987 (9), gammasuper=90.3634 (9) degrees, which relates to the non-super unit cell as asuper=-a, bsuper=-b-c, csuper=-b+c. The centrosymmetric and fully ordered deuterium sublattice was determined by simulated annealing and Rietveld refinement. Deuterium was found to occupy three types of tetrahedral sites: two that are coordinated by four Zr atoms and one that is coordinated by three Zr atoms and one Ni atom. All D-D distances are longer than 2 A. The feasibility of the crystal structure was supported by density functional theory calculations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA