Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(14): 18528-18536, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36989142

RESUMO

Thin layers introduced between a metal electrode and a solid electrolyte can significantly alter the transport of mass and charge at the interfaces and influence the rate of electrode reactions. C films embedded in functional materials can change the chemical properties of the host, thereby altering the functionality of the whole device. Using X-ray spectroscopies, here we demonstrate that the chemical and electronic structures in a representative redox-based resistive switching (RS) system, Ta2O5/Ta, can be tuned by inserting a graphene or ultrathin amorphous C layer. The results of the orbitalwise analyses of synchrotron Ta L3-edge, C K-edge, and O K-edge X-ray absorption spectroscopy showed that the C layers between Ta2O5 and Ta are significantly oxidized to form COx and, at the same time, oxidize the Ta layers with different degrees of oxidation depending on the distance: full oxidation at the nearest 5 nm Ta and partial oxidation in the next 15 nm Ta. The depth-resolved information on the electronic structure for each layer further revealed a significant modification of the band alignments due to C insertion. Full oxidation of the Ta metal near the C interlayer suggests that the oxygen-vacancy-related valence change memory mechanism for the RS can be suppressed, thereby changing the RS functionalities fundamentally. The knowledge on the origin of C-enhanced surfaces can be applied to other metal/oxide interfaces and used for the advanced design of memristive devices.

2.
Sci Rep ; 11(1): 4218, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33603012

RESUMO

The inevitable variability within electronic devices causes strict constraints on operation, reliability and scalability of the circuit design. However, when a compromise arises among the different performance metrics, area, time and energy, variability then loosens the tight requirements and allows for further savings in an alternative design scope. To that end, unconventional computing approaches are revived in the form of approximate computing, particularly tuned for resource-constrained mobile computing. In this paper, a proof-of-concept of the approximate computing paradigm using memristors is demonstrated. Stochastic memristors are used as the main building block of probabilistic logic gates. As will be shown in this paper, the stochasticity of memristors' switching characteristics is tightly bound to the supply voltage and hence to power consumption. By scaling of the supply voltage to appropriate levels stochasticity gets increased. In order to guide the design process of approximate circuits based on memristors a realistic device model needs to be elaborated with explicit emphasis of the probabilistic switching behavior. Theoretical formulation, probabilistic analysis, and simulation of the underlying logic circuits and operations are introduced. Moreover, the expected output behavior is verified with the experimental measurements of valence change memory cells. Hence, it is shown how the precision of the output is varied for the sake of the attainable gains at different levels of available design metrics. This approach represents the first proposition along with physical verification and mapping to real devices that combines stochastic memristors into unconventional computing approaches.

3.
Philos Trans A Math Phys Eng Sci ; 373(2057)2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26574531

RESUMO

Carbon dioxide has been shown to be an effective antisolvent gas for separating organic compounds from ionic liquids (ILs) by inducing a liquid-vapour to liquid-liquid-vapour transition. Using carbon dioxide, toluene can be separated from imidazolium, phosphonium and pyridinum cation-based ILs with the bis(trifluoromethylsulfonyl)imide anion, which is relatively hydrophobic and has a high toluene solubility. A new IL with relatively low viscosity is tested here for the same toluene separation process: 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide. Carbon dioxide solubility in binary and ternary systems containing toluene and 1-n-butylthiolanium bis(trifluoromethylsulfonyl)imide is measured at 298.15 and 313.15 K up to 7.4 MPa. Solubility behaviour in this IL is similar to imidazolium-based ILs with the same anion. However, phase split pressures are lower when 1-n-butylthiolanium bis (trifluoromethylsulfonyl)imide is used instead of 1- n-hexyl-3-methylimidazolium bis(trifluoromethylsu- lfonyl)imide at the same conditions of temperature and initial composition of toluene in the IL. Solubility data are modelled with the conductor-like screening model for real solvents combined with the Soave-Redlich-Kwong equation of state, which provides good qualitative results.

4.
Adv Mater ; 27(40): 6202-7, 2015 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-26456484

RESUMO

By modification of the electrode-solid-electrolyte interface with graphene, transit from valence change memories (VCM) to electrochemical metallization memories (ECM) in the cell Ta(C)/Ta2 O5 /Pt is demonstrated, thus, bridging both mechanisms. The ECM operation is discussed in the light of Ta-cation mobility in TaOx . The crucial role of electrochemical processes and moisture in the resistive switching process is also highlighted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...