Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; 182: 114118, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37863384

RESUMO

The popularity of quinoa seeds has increased in the last decade due to their high nutritional value and natural gluten-free composition. Consumption of new proteins may pose a risk of introducing new allergies. In the present study the immunogenicity and sensitising capacity of quinoa proteins were assessed in a dose-response experiment in Brown Norway rats in comparison to proteins from spinach and peanut. Cross-reactivity between quinoa proteins and known allergens was evaluated by in silico analyses followed by analyses with 11 selected protein extracts and their anti-sera by means of ELISAs and immunoblotting. Further, an in vitro simulated gastro-duodenal digestion was performed. Quinoa proteins were found to have an inherent medium to high immunogenicity and sensitising capacity, being able to induce specific IgG1 and IgE levels higher than spinach but lower than peanut and elicit reactions of clinical relevance similar to peanut. Quinoa proteins were generally shown to resist digestion and retain capacity to bind quinoa-specific antibodies. Quinoa proteins were shown to be cross-reactive with peanut and tree nut allergens as high sequence homology and antibody cross-binding were demonstrated. Present study suggests that quinoa pose a medium to high level of allergenicity that should be further investigated in human studies.


Assuntos
Chenopodium quinoa , Fabaceae , Hipersensibilidade a Amendoim , Ratos , Animais , Humanos , Alérgenos , Imunoglobulina E , Nozes , Arachis , Proteínas de Plantas
2.
Microorganisms ; 10(4)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35456803

RESUMO

Filamentous fungi are a large and diverse taxonomically group of microorganisms found in all habitats worldwide. They grow as a network of cells called hyphae. Since filamentous fungi live in very diverse habitats, they produce different enzymes to degrade material for their living, for example hydrolytic enzymes to degrade various kinds of biomasses. Moreover, they produce defense proteins (antimicrobial peptides) and proteins for attaching surfaces (hydrophobins). Many of them are easy to cultivate in different known setups (submerged fermentation and solid-state fermentation) and their secretion of proteins and enzymes are often much larger than what is seen from yeast and bacteria. Therefore, filamentous fungi are in many industries the preferred production hosts of different proteins and enzymes. Edible fungi have traditionally been used as food, such as mushrooms or in fermented foods. New trends are to use edible fungi to produce myco-protein enriched foods. This review gives an overview of the different kinds of proteins, enzymes, and peptides produced by the most well-known fungi used as cell factories for different purposes and applications. Moreover, we describe some of the challenges that are important to consider when filamentous fungi are optimized as efficient cell factories.

3.
Biotechnol Biofuels ; 13(1): 206, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33317620

RESUMO

BACKGROUND: Succinic acid has great potential to be a new bio-based building block for deriving a number of value-added chemicals in industry. Bio-based succinic acid production from renewable biomass can provide a feasible approach to partially alleviate the dependence of global manufacturing on petroleum refinery. To improve the economics of biological processes, we attempted to explore possible solutions with a fungal cell platform. In this study, Aspergillus niger, a well-known industrial production organism for bio-based organic acids, was exploited for its potential for succinic acid production. RESULTS: With a ribonucleoprotein (RNP)-based CRISPR-Cas9 system, consecutive genetic manipulations were realized in engineering of the citric acid-producing strain A. niger ATCC 1015. Two genes involved in production of two byproducts, gluconic acid and oxalic acid, were disrupted. In addition, an efficient C4-dicarboxylate transporter and a soluble NADH-dependent fumarate reductase were overexpressed. The resulting strain SAP-3 produced 17 g/L succinic acid while there was no succinic acid detected at a measurable level in the wild-type strain using a synthetic substrate. Furthermore, two cultivation parameters, temperature and pH, were investigated for their effects on succinic acid production. The highest amount of succinic acid was obtained at 35 °C after 3 days, and low culture pH had inhibitory effects on succinic acid production. Two types of renewable biomass were explored as substrates for succinic acid production. After 6 days, the SAP-3 strain was capable of producing 23 g/L and 9 g/L succinic acid from sugar beet molasses and wheat straw hydrolysate, respectively. CONCLUSIONS: In this study, we have successfully applied the RNP-based CRISPR-Cas9 system in genetic engineering of A. niger and significantly improved the succinic acid production in the engineered strain. The studies on cultivation parameters revealed the impacts of pH and temperature on succinic acid production and the future challenges in strain development. The feasibility of using renewable biomass for succinic acid production by A. niger has been demonstrated with molasses and wheat straw hydrolysate.

4.
World J Microbiol Biotechnol ; 36(7): 98, 2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32601748

RESUMO

Aspergillus carbonarius is an efficient producer of organic acids with great potential for bio-based production of organic acids. In this study, we identified a gene f2kp encoding the enzyme 6-phosphofructo-2-kinase known as an allosteric regulator of the glycolytic flux and investigated its role in the production of organic acid. The strategy was to examine the impact of citric acid and malic acid production by overexpressing and disrupting f2kp, respectively. The overexpressing transformants expressed f2kp at higher level than the wild type, whereas no expression of f2kp was detected in the knockout transformants. Citric acid and malic acid production by the knockout strains decreased sharply along with a significant lower sugar consumption, though the overexpressing transformants produced similar amounts of citric acid and malic acid as the wild type. We conclude that 6-phosphofructo-2-kinase has an important regulatory role for the glycolytic flux and organic acid production in A. carbonarius.


Assuntos
Ácidos/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Compostos Orgânicos/metabolismo , Fosfofrutoquinase-2/genética , Fosfofrutoquinase-2/metabolismo , Aspergillus/enzimologia , Ácido Cítrico/metabolismo , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos/genética , Malatos/metabolismo , Transcriptoma
5.
BMC Biotechnol ; 19(1): 72, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684928

RESUMO

BACKGROUND: In filamentous fungi, transport of organic acids across the mitochondrial membrane is facilitated by active transport via shuttle proteins. These transporters may transfer different organic acids across the membrane while taking others the opposite direction. In Aspergillus niger, accumulation of malate in the cytosol can trigger production of citric acid via the exchange of malate and citrate across the mitochondrial membrane. Several mitochondrial organic acid transporters were recently studied in A. niger showing their effects on organic acid production. RESULTS: In this work, we studied another citric acid producing fungus, Aspergillus carbonarius, and identified by genome-mining a putative mitochondrial transporter MtpA, which was not previously studied, that might be involved in production of citric acid. This gene named mtpA encoding a putative oxaloacetate transport protein was expressed constitutively in A. carbonarius based on transcription analysis. To study its role in organic acid production, we disrupted the gene and analyzed its effects on production of citric acid and other organic acids, such as malic acid. In total, 6 transformants with gene mtpA disrupted were obtained and they showed secretion of malic acid at the expense of citric acid production. CONCLUSION: A putative oxaloacetate transporter gene which is potentially involved in organic acid production by A. carbonarius was identified and further investigated on its effects on production of citric acid and malic acid. The mtpA knockout strains obtained produced less citric acid and more malic acid than the wild type, in agreement with our original hypothesis. More extensive studies should be conducted in order to further reveal the mechanism of organic acid transport as mediated by the MtpA transporter.


Assuntos
Aspergillus/metabolismo , Ácido Cítrico/metabolismo , Engenharia Metabólica/métodos , Proteínas Mitocondriais/metabolismo , Oxaloacetatos/metabolismo , Malatos/metabolismo
6.
FEMS Microbiol Lett ; 366(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30715346

RESUMO

Lactic acid bacteria (LAB) have extensive industrial applications as producers of lactic acid, as probiotics, as biocontrol agents and as biopreservatives. LAB play a large role in food fermentation and in silage processes, where crops such as grass, legumes, cereals or corn are fermented into high-moisture feed that is storable and can be used to feed cattle, sheep or other ruminants. LAB also have great applications within green biorefineries, with simultaneous production of protein-rich feed for monogastric animals, silage or feed pellets for ruminants and production of lactic acid or specific amino acids. In green biorefineries, fresh or ensiled wet biomass is mechanically fractionated into green juice and solid residues (press cake), where the plant juice, for example, can be used for production of lactic acid using LAB. In a process named 'ENLAC', recovery of protein and chlorophyll from silage by simultaneous lactic acid fermentation and enzyme hydrolysis has been developed. Furthermore, a process for protein recovery was recently developed by applying a specific LAB starter culture to green juice from freshly harvested crops. This paper focuses on reviewing LAB for their applications within biorefining of 'green' crops such as clover, alfalfa, grasses and other green plant materials.


Assuntos
Lactobacillales/metabolismo , Plantas/microbiologia , Silagem/microbiologia , Clorofila/metabolismo , Microbiologia Industrial , Proteínas de Plantas/metabolismo
7.
Methods Mol Biol ; 1796: 25-33, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856043

RESUMO

Among cellulases, ß-glucosidases play a key role in the final conversion of cellulose into glucose as well as they boost the performance of the other cellulases, in particular cellobiohydrolases in relieving product inhibition. This chapter serves as case example from screening for novel fungal cellulases focusing on ß-glucosidases to identifying a gene encoding the key ß-glucosidase in the fungus with highest activity. In the case example, the ß-glucosidase-producing fungus showed to belong to an unknown fungal species, Aspergillus saccharolyticus, not previously described. The gene was expressed in Trichoderma reesei, which has low indigenous ß-glucosidase activity, and the activity of the purified enzyme was assessed in hydrolysis of various pretreated lignocellulosic biomasses. The potential of using the natural producing strain for on-site production of ß-glucosidases using lignocellulosic biorefinery waste streams as substrates is discussed. Finally, the potential of the fungus for consolidated bioprocessing of waste streams into valuable compounds, such as organic acids is highlighted.


Assuntos
Aspergillus/enzimologia , Biotecnologia/métodos , beta-Glucosidase/metabolismo , Biocombustíveis , beta-Glucosidase/isolamento & purificação
8.
Methods Mol Biol ; 1796: 37-45, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29856044

RESUMO

Filamentous fungi are among the microorganisms that most efficiently are able to degrade plant biomass by secreting cell wall-degrading enzymes and they are therefore used extensively in the industry as workhorses for the production of enzymes, including cellulases for the use in second-generation biorefinery concepts. Fungi are therefore of interest both as resources for the search of novel cellulolytic enzymes and for production of enzymes and enzyme cocktails, which also can be carried out on-site using cheap lignocellulosic substrates for growth and enzyme production. Fungi can be isolated from different environmental niches, such as soil, compost, decaying wood, decaying plant material, building materials, and different foodstuffs. Selective isolation can be carried out using simple cellulosic or complex plant material in the media. In this chapter, methods used for the isolation and screening of cellulolytic fungi isolated from different ecological niches are presented. The screening assay presented in the chapter is an easy semiquantitative high-throughput agar plate screening method using azurine-cross-linked (AZCL) cellulose substrates.


Assuntos
Celulose/metabolismo , Fungos/isolamento & purificação , Fungos/metabolismo , Biologia Molecular/métodos , Celulases/isolamento & purificação , Meios de Cultura , Fungos/enzimologia
9.
Microb Cell Fact ; 16(1): 43, 2017 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-28288640

RESUMO

BACKGROUND: C4-dicarboxylic acids, including malic acid, fumaric acid and succinic acid, are valuable organic acids that can be produced and secreted by a number of microorganisms. Previous studies on organic acid production by Aspergillus carbonarius, which is capable of producing high amounts of citric acid from varieties carbon sources, have revealed its potential as a fungal cell factory. Earlier attempts to reroute citric acid production into C4-dicarboxylic acids have been with limited success. RESULTS: In this study, a glucose oxidase deficient strain of A. carbonarius was used as the parental strain to overexpress a native C4-dicarboxylate transporter and the gene frd encoding fumarate reductase from Trypanosoma brucei individually and in combination. Impacts of the introduced genetic modifications on organic acid production were investigated in a defined medium and in a hydrolysate of wheat straw containing high concentrations of glucose and xylose. In the defined medium, overexpression of the C4-dicarboxylate transporter alone and in combination with the frd gene significantly increased the production of C4-dicarboxylic acids and reduced the accumulation of citric acid, whereas expression of the frd gene alone did not result in any significant change of organic acid production profile. In the wheat straw hydrolysate after 9 days of cultivation, similar results were obtained as in the defined medium. High amounts of malic acid and succinic acid were produced by the same strains. CONCLUSIONS: This study demonstrates that the key to change the citric acid production into production of C4-dicarboxylic acids in A. carbonarius is the C4-dicarboxylate transporter. Furthermore it shows that the C4-dicarboxylic acid production by A. carbonarius can be further increased via metabolic engineering and also shows the potential of A. carbonarius to utilize lignocellulosic biomass as substrates for C4-dicarboxylic acid production.


Assuntos
Aspergillus/genética , Aspergillus/metabolismo , Ácido Cítrico/metabolismo , Transportadores de Ácidos Dicarboxílicos/genética , Transportadores de Ácidos Dicarboxílicos/metabolismo , Ácidos Dicarboxílicos/metabolismo , Regulação para Cima , Biomassa , Meios de Cultura/química , Glucose/metabolismo , Glucose Oxidase/genética , Glucose Oxidase/metabolismo , Lignina/metabolismo , Malatos/metabolismo , Engenharia Metabólica/métodos , Polissacarídeos/metabolismo , Succinato Desidrogenase/genética , Triticum/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/genética , Xilose/metabolismo
10.
J Microbiol Methods ; 135: 26-34, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28159628

RESUMO

In recent years, versatile genetic tools have been developed and applied to a number of filamentous fungi of industrial importance. However, the existing techniques have limitations when it comes to achieve the desired genetic modifications, especially for efficient gene targeting. In this study, we used Aspergillus carbonarius as a host strain due to its potential as a cell factory, and compared three gene targeting techniques by disrupting the ayg1 gene involved in the biosynthesis of conidial pigment in A. carbonarius. The absence of the ayg1 gene leads to phenotypic change in conidia color, which facilitated the analysis on the gene targeting frequency. The examined transformation techniques included Agrobacterium-mediated transformation (AMT) and protoplast-mediated transformation (PMT). Furthermore, the PMT for the disruption of the ayg1 gene was carried out with bipartite gene targeting fragments and the recently adapted CRISPR-Cas9 system. All three techniques were successful in generating Δayg1 mutants, but showed different efficiencies. The most efficient method for gene targeting was AMT, but further it was shown to be dependent on the choice of Agrobacterium strain. However, there are different advantages and disadvantages of all three gene targeting methods which are discussed, in order to facilitate future approaches for fungal strain improvements.


Assuntos
Agrobacterium tumefaciens/genética , Aspergillus/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Marcação de Genes/métodos , Pigmentos Biológicos/genética , Protoplastos/metabolismo , Transformação Genética/genética , Aspergillus/metabolismo , DNA Fúngico/genética , Regulação Fúngica da Expressão Gênica , Técnicas de Inativação de Genes , Genes Fúngicos/genética , Engenharia Genética/métodos , Marcadores Genéticos , Recombinação Homóloga/genética , Mutação , Fenótipo , Pigmentos Biológicos/biossíntese , Esporos Fúngicos/genética
11.
J Ind Microbiol Biotechnol ; 43(8): 1139-47, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27169528

RESUMO

The global regulatory protein LaeA is known for regulating the production of many kinds of secondary metabolites in Aspergillus species, as well as sexual and asexual reproduction, and morphology. In Aspergillus carbonarius, it has been shown that LaeA regulates production of ochratoxin. We have investigated the regulatory effect of LaeA on production of citric acid and cellulolytic enzymes in A. carbonarius. Two types of A. carbonarius strains, having laeA knocked out or overexpressed, were constructed and tested in fermentation. The knockout of laeA significantly decreased the production of citric acid and endoglucanases, but did not reduce the production of beta-glucosidases or xylanases. The citric acid accumulation was reduced with 74-96 % compared to the wild type. The endoglucanase activity was reduced with 51-78 %. Overexpression of LaeA seemed not to have an effect on citric acid production or on cellulose or xylanase activity.


Assuntos
Aspergillus/metabolismo , Celulases/metabolismo , Ácido Cítrico/metabolismo , Metiltransferases/fisiologia , Aspergillus/enzimologia , Aspergillus/genética , Fermentação , Metiltransferases/genética
12.
World J Microbiol Biotechnol ; 32(4): 57, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26925619

RESUMO

Aspergillus carbonarius exhibits excellent abilities to utilize a wide range of carbon sources and to produce various organic acids. In this study, wheat straw hydrolysate containing high concentrations of glucose and xylose was used for organic acid production by A. carbonarius. The results indicated that A. carbonarius efficiently co-consumed glucose and xylose and produced various types of organic acids in hydrolysate adjusted to pH 7. The inhibitor tolerance of A. carbonarius to the hydrolysate at different pH values was investigated and compared using spores and recycled mycelia. This comparison showed a slight difference in the inhibitor tolerance of the spores and the recycled mycelia based on their growth patterns. Moreover, the wild-type and a glucose oxidase deficient (Δgox) mutant were compared for their abilities to produce organic acids using the hydrolysate and a defined medium. The two strains showed a different pattern of organic acid production in the hydrolysate where the Δgox mutant produced more oxalic acid but less citric acid than the wild-type, which was different from the results obtained in the defined medium This study demonstrates the feasibility of using lignocellulosic biomass for the organic acid production by A. carbonarius.


Assuntos
Aspergillus/crescimento & desenvolvimento , Ácidos Carboxílicos/metabolismo , Glucose/metabolismo , Triticum/química , Xilose/metabolismo , Biomassa , Estudos de Viabilidade , Fermentação , Concentração de Íons de Hidrogênio , Hidrólise , Micélio/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento
13.
Appl Microbiol Biotechnol ; 100(4): 1799-1809, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26521243

RESUMO

Aspergillus saccharolyticus exhibits great potential as a cell factory for industrial production of dicarboxylic acids. In the analysis of the organic acid profile, A. saccharolyticus was cultivated in an acid production medium using two different pH conditions. The specific activities of the enzymes, pyruvate carboxylase (PYC), malate dehydrogenase (MDH), and fumarase (FUM), involved in the reductive tricarboxylic acid (rTCA) branch, were examined and compared in cells harvested from the acid production medium and a complete medium. The results showed that ambient pH had a significant impact on the pattern and the amount of organic acids produced by A. saccharolyticus. The wild-type strain produced higher amount of malic acid and succinic acid in the pH buffered condition (pH 6.5) compared with the pH non-buffered condition. The enzyme assays showed that the rTCA branch was active in the acid production medium as well as the complete medium, but the measured enzyme activities were different depending on the media. Furthermore, a soluble NADH-dependent fumarate reductase gene (frd) from Trypanosoma brucei was inserted and expressed in A. saccharolyticus. The expression of the frd gene led to an enhanced production of succinic acid in frd transformants compared with the wild-type in both pH buffered and pH non-buffered conditions with highest amount produced in the pH buffered condition (16.2 ± 0.5 g/L). This study demonstrates the feasibility of increasing succinic acid production through the cytosolic reductive pathway by genetic engineering in A. saccharolyticus.


Assuntos
Aspergillus/enzimologia , Aspergillus/metabolismo , Expressão Gênica , Succinato Desidrogenase/genética , Succinato Desidrogenase/metabolismo , Ácido Succínico/metabolismo , Trypanosoma brucei brucei/enzimologia , Aspergillus/genética , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Trypanosoma brucei brucei/genética
14.
J Ind Microbiol Biotechnol ; 42(11): 1533-45, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26403577

RESUMO

Aspergillus carbonarius has a potential as a cell factory for production of various organic acids. In this study, the organic acid profile of A. carbonarius was investigated under different cultivation conditions. Moreover, two heterologous genes, pepck and ppc, which encode phosphoenolpyruvate carboxykinase in Actinobacillus succinogenes and phosphoenolpyruvate carboxylase in Escherichia coli, were inserted individually and in combination in A. carbonarius to enhance the carbon flux toward the reductive TCA branch. Results of transcription analysis and measurement of enzyme activities of phosphoenolpyruvate carboxykinase and phosphoenolpyruvate carboxylase in the corresponding single and double transformants demonstrated that the two heterologous genes were successfully expressed in A. carbonarius. The production of citric acid increased in all the transformants in both glucose- and xylose-based media at pH higher than 3 but did not increase in the pH non-buffered cultivation compared with the wild type.


Assuntos
Actinobacillus/enzimologia , Aspergillus/metabolismo , Ácido Cítrico/metabolismo , Escherichia coli/enzimologia , Fosfoenolpiruvato Carboxiquinase (ATP)/metabolismo , Fosfoenolpiruvato Carboxilase/metabolismo , Actinobacillus/genética , Aspergillus/efeitos dos fármacos , Aspergillus/genética , Reatores Biológicos , Ciclo do Carbono , Escherichia coli/genética , Glucose/metabolismo , Glucose/farmacologia , Concentração de Íons de Hidrogênio , Fosfoenolpiruvato Carboxiquinase (ATP)/genética , Fosfoenolpiruvato Carboxilase/genética , Transformação Genética , Xilose/metabolismo , Xilose/farmacologia
15.
AMB Express ; 4: 54, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25401063

RESUMO

Aspergillus carbonarius has potential as a cell factory for the production of different organic acids. At pH 5.5, A.carbonarius accumulates high amounts of gluconic acid when it grows on glucose based medium whereas at low pH, it produces citric acid. The conversion of glucose to gluconic acid is carried out by secretion of the enzyme, glucose oxidase. In this work, the gene encoding glucose oxidase was identified and deleted from A. carbonarius with the aim of changing the carbon flux towards other organic acids. The effect of genetic engineering was examined by testing glucose oxidase deficient (Δgox) mutants for the production of different organic acids in a defined production medium. The results obtained showed that the gluconic acid accumulation was completely inhibited and increased amounts of citric acid, oxalic acid and malic acid were observed in the Δgox mutants.

16.
Bioresour Technol ; 169: 143-148, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25043347

RESUMO

Co-cultivation of fungi may be an excellent system for on-site production of cellulolytic enzymes in a single bioreactor. Enzyme supernatants from mixed cultures of Trichoderma reesei RutC30, with either the novel Aspergillus saccharolyticus AP, Aspergillus carbonarius ITEM 5010 or Aspergillus niger CBS 554.65 cultivated in solid-state fermentation were tested for avicelase, FPase, endoglucanase and beta-glucosidase activity as well as in hydrolysis of pretreated wheat straw. Around 30% more avicelase activity was produced in co-cultivation of T. reesei and A. saccharolyticus than in T. reesei monoculture, suggesting synergistic interaction between those fungi. Fermentation broths of mixed cultures of T. reesei with different Aspergillus strains resulted in approx. 80% efficiency of hydrolysis which was comparable to results obtained using blended supernatants from parallel monocultures. This indicates that co-cultivation of T. reesei with A. saccharolyticus or A. carbonarius could be a competitive alternative for monoculture enzyme production and a cheaper alternative to commercial enzymes.


Assuntos
Aspergillus/enzimologia , Biotecnologia/métodos , Enzimas/biossíntese , Trichoderma/enzimologia , Triticum/enzimologia , Resíduos , Fermentação , Hidrólise , Triticum/química
17.
J Ind Microbiol Biotechnol ; 41(4): 733-9, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24570325

RESUMO

Aspergillus carbonarius accumulates xylitol when it grows on D-xylose. In fungi, D-xylose is reduced to xylitol by the NAD(P)H-dependent xylose reductase (XR). Xylitol is then further oxidized by the NAD(+)-dependent xylitol dehydrogenase (XDH). The cofactor impairment between the XR and XDH can lead to the accumulation of xylitol under oxygen-limiting conditions. Most of the XRs are NADPH dependent and contain a conserved Ile-Pro-Lys-Ser motif. The only known naturally occurring NADH-dependent XR (from Candida parapsilosis) carries an arginine residue instead of the lysine in this motif. In order to overcome xylitol accumulation in A. carbonarius a Lys-274 to Arg point mutation was introduced into the XR with the aim of changing the specificity toward NADH. The effect of the genetic engineering was examined in fermentation for citric acid production and xylitol accumulation by using D-xylose as the sole carbon source. Fermentation with the mutant strain showed a 2.8-fold reduction in xylitol accumulation and 4.5-fold increase in citric acid production compared to the wild-type strain. The fact that the mutant strain shows decreased xylitol levels is assumed to be associated with the capability of the mutated XR to use the NADH generated by the XDH, thus preventing the inhibition of XDH by the high levels of NADH and ensuring the flux of xylose through the pathway. This work shows that enhanced production of citric acid can be achieved using xylose as the sole carbon source by reducing accumulation of other by-products, such as xylitol.


Assuntos
Aldeído Redutase/genética , Aspergillus/enzimologia , Ácido Cítrico/metabolismo , Mutação Puntual , Xilitol/metabolismo , Aldeído Redutase/metabolismo , Aspergillus/genética , Aspergillus/metabolismo , Candida/enzimologia , D-Xilulose Redutase/metabolismo , Fermentação , NAD/metabolismo , NADP/metabolismo , Xilose/metabolismo
18.
J Microbiol Methods ; 96: 42-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184309

RESUMO

The two novel methods for DNA cloning presented here have been developed for the rapid construction of vectors used for insertion of genes in filamentous fungi. The current study shows that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids. The simpleUSER cloning method proposed in this paper varies from USER cloning by substituting the dual enzymatic plasmid preparation step with a single enzymatic step. The other method further abolishes the use of USER™ enzyme mix and PfuTurbo Cx polymerase, and is referred to as nicking cloning. We show that both simpleUSER cloning and nicking cloning can substitute USER cloning for insertion of single PCR fragments into plasmids, and that the combination of these two methods works efficiently for the construction of selective plasmids and plasmids for co-transformation. This strategy was applied to genetically modify the filamentous fungus Aspergillus carbonarius. The two methods simplify DNA cloning by reducing time and complexity associated with cloning in filamentous fungi.


Assuntos
Clonagem Molecular/métodos , Fungos/genética , Genética Microbiana/métodos , Vetores Genéticos , Plasmídeos , Recombinação Genética , Transformação Genética
19.
Biomolecules ; 3(3): 612-31, 2013 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-24970184

RESUMO

Profitable biomass conversion processes are highly dependent on the use of efficient enzymes for lignocellulose degradation. Among the cellulose degrading enzymes, beta-glucosidases are essential for efficient hydrolysis of cellulosic biomass as they relieve the inhibition of the cellobiohydrolases and endoglucanases by reducing cellobiose accumulation. In this review, we discuss the important role beta-glucosidases play in complex biomass hydrolysis and how they create a bottleneck in industrial use of lignocellulosic materials. An efficient beta-glucosidase facilitates hydrolysis at specified process conditions, and key points to consider in this respect are hydrolysis rate, inhibitors, and stability. Product inhibition impairing yields, thermal inactivation of enzymes, and the high cost of enzyme production are the main obstacles to commercial cellulose hydrolysis. Therefore, this sets the stage in the search for better alternatives to the currently available enzyme preparations either by improving known or screening for new beta-glucosidases.

20.
Can J Microbiol ; 58(9): 1035-46, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22906186

RESUMO

The newly discovered fungal species Aspergillus saccharolyticus was found to produce a culture broth rich in ß-glucosidase activity. In this present work, the main ß-glucosidase of A. saccharolyticus responsible for the efficient hydrolytic activity was identified, isolated, and characterized. Ion exchange chromatography was used to fractionate the culture broth, yielding fractions with high ß-glucosidase activity and only 1 visible band on an SDS-PAGE gel. Mass spectrometry analysis of this band gave peptide matches to ß-glucosidases from aspergilli. Through a polymerase chain reaction approach using degenerate primers and genome walking, a 2919 bp sequence encoding the 860 amino acid BGL1 polypeptide was determined. BGL1 of A. saccharolyticus has 91% and 82% identity with BGL1 from Aspergillus aculeatus and BGL1 from Aspergillus niger , respectively, both belonging to Glycoside Hydrolase family 3. Homology modeling studies suggested ß-glucosidase activity with preserved retaining mechanism and a wider catalytic pocket compared with other ß-glucosidases. The bgl1 gene was heterologously expressed in Trichoderma reesei QM6a, purified, and characterized by enzyme kinetics studies. The enzyme can hydrolyze cellobiose, p-nitrophenyl-ß-d-glucoside, and cellodextrins. The enzyme showed good thermostability, was stable at 50 °C, and at 60 °C it had a half-life of approximately 6 h.


Assuntos
Aspergillus/enzimologia , Modelos Moleculares , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Sequência de Aminoácidos , Aspergillus/genética , Celobiose/metabolismo , Celulose/análogos & derivados , Celulose/metabolismo , Dextrinas/metabolismo , Meia-Vida , Concentração de Íons de Hidrogênio , Hidrólise , Cinética , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Alinhamento de Sequência , Temperatura , Trichoderma/genética , beta-Glucosidase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...