Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Pollut Bull ; 182: 113949, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35932724

RESUMO

The long-term fate of plastics in the ocean and their interactions with marine microorganisms remain poorly understood. In particular, the role of sinking plastic particles as a transport vector for surface microbes towards the deep sea has not been investigated. Here, we present the first data on the composition of microbial communities on floating and suspended plastic particles recovered from the surface to the bathypelagic water column (0-2000 m water depth) of the North Pacific Subtropical Gyre. Microbial community composition of suspended plastic particles differed from that of plastic particles afloat at the sea surface. However, in both compartments, a diversity of hydrocarbon-degrading bacteria was identified. These findings indicate that microbial community members initially present on floating plastics are quickly replaced by microorganisms acquired from deeper water layers, thus suggesting a limited efficiency of sinking plastic particles to vertically transport microorganisms in the North Pacific Subtropical Gyre.


Assuntos
Microbiota , Plásticos , Bactérias , Oceano Pacífico , Água do Mar/microbiologia , Água
2.
FEMS Microbiol Ecol ; 98(3)2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35170720

RESUMO

Traditional rice cultivation consumes up to 2500 L of water per kg yield and new strategies such as the 'Alternate Wetting and Drying' (AWD) might be promising water-saving alternatives. However, they might have large impacts on the soil microbiology. In this study, we compared the bacterial and archaeal communities in experimental field plots, cultivated under continuously flooding (CF) and AWD management, by high-throughput sequencing of the 16S rRNA gene. We analysed alpha and beta diversity in bulk soil and on plant roots, in plots cultivated with two different rice cultivars. The strongest difference was found between soil and root communities. Beside others, the anaerobic methanotroph Methanoperedens was abundant in soil, however, we detected a considerable number of ANME-2a-2b on plant roots. Furthermore, root communities were significantly affected by the water management: Differential abundance analysis revealed the enrichment of aerobic and potentially plant-growth-promoting bacteria under AWD treatment, such as Sphingomonadaceae and Rhizobiaceae (both Alphaproteobacteria), and Bacteroidetes families. Microorganisms with an overall anaerobic lifestyle, such as various Delta- and Epsilonproteobacteria, and Firmicutes were depleted. Our study indicates that the bulk soil communities seem overall well adapted and more resistant to changes in the water treatment, whereas the root microbiota seems more vulnerable.


Assuntos
Oryza , Rhizobiaceae , Humanos , RNA Ribossômico 16S/genética , Solo/química , Microbiologia do Solo , Abastecimento de Água
3.
mSphere ; 4(3)2019 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-31167950

RESUMO

Methane-oxidizing microorganisms perform an important role in reducing emissions of the greenhouse gas methane to the atmosphere. To date, known bacterial methanotrophs belong to the Proteobacteria, Verrucomicrobia, and NC10 phyla. Within the Proteobacteria phylum, they can be divided into type Ia, type Ib, and type II methanotrophs. Type Ia and type II are well represented by isolates. Contrastingly, the vast majority of type Ib methanotrophs have not been able to be cultivated so far. Here, we compared the distributions of type Ib lineages in different environments. Whereas the cultivated type Ib methanotrophs (Methylococcus and Methylocaldum) are found in landfill and upland soils, lineages that are not represented by isolates are mostly dominant in freshwater environments, such as paddy fields and lake sediments. Thus, we observed a clear niche differentiation within type Ib methanotrophs. Our subsequent isolation attempts resulted in obtaining a pure culture of a novel type Ib methanotroph, tentatively named "Methylotetracoccus oryzae" C50C1. Strain C50C1 was further characterized to be an obligate methanotroph, containing C16:1ω9c as the major membrane phospholipid fatty acid, which has not been found in other methanotrophs. Genome analysis of strain C50C1 showed the presence of two pmoCAB operon copies and XoxF5-type methanol dehydrogenase in addition to MxaFI. The genome also contained genes involved in nitrogen and sulfur cycling, but it remains to be demonstrated if and how these help this type Ib methanotroph to adapt to fluctuating environmental conditions in freshwater ecosystems.IMPORTANCE Most of the methane produced on our planet gets naturally oxidized by a group of methanotrophic microorganisms before it reaches the atmosphere. These microorganisms are able to oxidize methane, both aerobically and anaerobically, and use it as their sole energy source. Although methanotrophs have been studied for more than a century, there are still many unknown and uncultivated groups prevalent in various ecosystems. This study focused on the diversity and adaptation of aerobic methane-oxidizing bacteria in different environments by comparing their phenotypic and genotypic properties. We used lab-scale microcosms to create a countergradient of oxygen and methane for preenrichment, followed by classical isolation techniques to obtain methane-oxidizing bacteria from a freshwater environment. This resulted in the discovery and isolation of a novel methanotroph with interesting physiological and genomic properties that could possibly make this bacterium able to cope with fluctuating environmental conditions.


Assuntos
Água Doce/microbiologia , Metano/metabolismo , Methylococcaceae/classificação , Adaptação Fisiológica , Técnicas de Tipagem Bacteriana , DNA Bacteriano/genética , Ácidos Graxos/química , Genoma Bacteriano , Methylococcaceae/isolamento & purificação , Methylococcaceae/fisiologia , Filogenia , RNA Ribossômico 16S/genética
4.
Curr Biol ; 28(18): 2970-2977.e7, 2018 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-30197088

RESUMO

Phenotypic plasticity has been hypothesized to precede and facilitate adaptation to novel environments [1-8], but examples of plasticity preceding adaptation in wild populations are rare (but see [9, 10]). We studied a population of side-blotched lizards, Uta stansburiana, living on a lava flow that formed 22,500 years ago [11] to understand the origin of their novel melanic phenotype that makes them cryptic on the black lava. We found that lizards living on and off of the lava flow exhibited phenotypic plasticity in coloration but also appeared to have heritable differences in pigmentation. We sequenced the exomes of 104 individuals and identified two known regulators of melanin production, PREP and PRKAR1A, which had markedly increased levels of divergence between lizards living on and off the lava flow. The derived variants in PREP and PRKAR1A were only found in the lava population and were associated with increased pigmentation levels in an experimental cohort of hatchling lizards. Simulations suggest that the derived variants in the PREP and PRKAR1A genes arose recently and were under strong positive selection in the lava population. Overall, our results suggest that ancestral plasticity for coloration facilitated initial survival in the lava environment and was followed by genetic changes that modified the phenotype in the direction of the induced plastic response, possibly through de novo mutations. These observations provide a detailed example supporting the hypothesis that plasticity aids in the initial colonization of a novel habitat, with natural selection subsequently refining the phenotype with genetic adaptations to the new environment. VIDEO ABSTRACT.


Assuntos
Adaptação Fisiológica , Meio Ambiente , Lagartos/fisiologia , Melaninas/genética , Pigmentação/fisiologia , Proteínas de Répteis/genética , Animais , California , Cor , Lagartos/genética , Melaninas/metabolismo , Fenótipo , Pigmentação/genética , Proteínas de Répteis/metabolismo
5.
mSystems ; 3(1)2018.
Artigo em Inglês | MEDLINE | ID: mdl-29404427

RESUMO

Wetland ecosystems are important reservoirs of biodiversity and significantly contribute to emissions of the greenhouse gases CO2, N2O, and CH4. High anthropogenic nitrogen (N) inputs from agriculture and fossil fuel combustion have been recognized as a severe threat to biodiversity and ecosystem functioning, such as control of greenhouse gas emissions. Therefore, it is important to understand how increased N input into pristine wetlands affects the composition and activity of microorganisms, especially in interaction with dominant wetland plants. In a series of incubations analyzed over 90 days, we disentangled the effects of N fertilization on the microbial community in bulk soil and the rhizosphere of Juncus acutiflorus, a common and abundant graminoid wetland plant. We observed an increase in greenhouse gas emissions when N is increased in incubations with J. acutiflorus, changing the system from a greenhouse gas sink to a source. Using 16S rRNA gene amplicon sequencing, we determined that the bacterial orders Opitutales, subgroup 6 Acidobacteria, and Sphingobacteriales significantly responded to high N availability. Based on metagenomic data, we hypothesize that these groups are contributing to the increased greenhouse gas emissions. These results indicated that increased N input leads to shifts in microbial activity within the rhizosphere, altering N cycling dynamics. Our study provides a framework for connecting environmental conditions of wetland bulk and rhizosphere soil to the structure and metabolic output of microbial communities. IMPORTANCE Microorganisms living within the rhizospheres of wetland plants significantly contribute to greenhouse gas emissions. Understanding how microbes produce these gases under conditions that have been imposed by human activities (i.e., nitrogen pollution) is important to the development of future management strategies. Our results illustrate that within the rhizosphere of the wetland plant Juncus acutiflorus, physiological differences associated with nitrogen availability can influence microbial activity linked to greenhouse gas production. By pairing taxonomic information and environmental conditions like nitrogen availability with functional outputs of a system such as greenhouse gas fluxes, we present a framework to link certain taxa to both nitrogen load and greenhouse gas production. We view this type of combined information as essential in moving forward in our understanding of complex systems such as rhizosphere microbial communities.

6.
Front Microbiol ; 8: 2127, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29180985

RESUMO

Paddy fields are important ecosystems, as rice is the primary food source for about half of the world's population. Paddy fields are impacted by nitrogen fertilization and are a major anthropogenic source of methane. Microbial diversity and methane metabolism were investigated in the upper 60 cm of a paddy soil by qPCR, 16S rRNA gene amplicon sequencing and anoxic 13C-CH4 turnover with a suite of electron acceptors. The bacterial community consisted mainly of Acidobacteria, Chloroflexi, Proteobacteria, Planctomycetes, and Actinobacteria. Among archaea, Euryarchaeota and Bathyarchaeota dominated over Thaumarchaeota in the upper 30 cm of the soil. Bathyarchaeota constituted up to 45% of the total archaeal reads in the top 5 cm. In the methanogenic community, Methanosaeta were generally more abundant than the versatile Methanosarcina. The measured maximum methane production rate was 444 nmol gdwh-1, and the maximum rates of nitrate-, nitrite-, and iron-dependent anaerobic oxidation of methane (AOM) were 57 nmol, 55 nmol, and 56 nmol gdwh-1, respectively, at different depths. qPCR revealed a higher abundance of 'Candidatus Methanoperedens nitroreducens' than methanotrophic NC10 phylum bacteria at all depths, except at 60 cm. These results demonstrate that there is substantial potential for AOM in fertilized paddy fields, with 'Candidatus Methanoperedens nitroreducens' archaea as a potential important contributor.

7.
Appl Microbiol Biotechnol ; 101(18): 7075-7084, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28779290

RESUMO

Paddy fields are a significant source of methane and contribute up to 20% of total methane emissions from wetland ecosystems. These inundated, anoxic soils featuring abundant nitrogen compounds and methane are an ideal niche for nitrate-dependent anaerobic methanotrophs. After 2 years of enrichment with a continuous supply of methane and nitrate as the sole electron donor and acceptor, a stable enrichment dominated by 'Candidatus Methanoperedens nitroreducens' archaea and 'Candidatus Methylomirabilis oxyfera' NC10 phylum bacteria was achieved. In this community, the methanotrophic archaea supplied the NC10 phylum bacteria with the necessary nitrite through nitrate reduction coupled to methane oxidation. The results of qPCR quantification of 16S ribosomal RNA (rRNA) gene copies, analysis of metagenomic 16S rRNA reads, and fluorescence in situ hybridization (FISH) correlated well and showed that after 2 years, 'Candidatus Methanoperedens nitroreducens' had the highest abundance of (2.2 ± 0.4 × 108) 16S rRNA copies per milliliter and constituted approximately 22% of the total microbial community. Phylogenetic analysis showed that the 16S rRNA genes of the dominant microorganisms clustered with previously described 'Candidatus Methanoperedens nitroreducens ANME2D' (96% identity) and 'Candidatus Methylomirabilis oxyfera' (99% identity) strains. The pooled metagenomic sequences resulted in a high-quality draft genome assembly of 'Candidatus Methanoperedens nitroreducens Vercelli' that contained all key functional genes for the reverse methanogenesis pathway and nitrate reduction. The diagnostic mcrA gene was 96% similar to 'Candidatus Methanoperedens nitroreducens ANME2D' (WP_048089615.1) at the protein level. The 'Candidatus Methylomirabilis oxyfera' draft genome contained the marker genes pmoCAB, mdh, and nirS and putative NO dismutase genes. Whole-reactor anaerobic activity measurements with methane and nitrate revealed an average methane oxidation rate of 0.012 mmol/h/L, with cell-specific methane oxidation rates up to 0.57 fmol/cell/day for 'Candidatus Methanoperedens nitroreducens'. In summary, this study describes the first enrichment and draft genome of methanotrophic archaea from paddy field soil, where these organisms can contribute significantly to the mitigation of methane emissions.


Assuntos
Archaea/isolamento & purificação , Genoma Arqueal/genética , Metano/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Anaerobiose , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Reatores Biológicos , Anotação de Sequência Molecular , Oxirredução , Filogenia , Análise de Sequência de DNA , Solo , Áreas Alagadas
8.
AMB Express ; 7(1): 162, 2017 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-28831762

RESUMO

Methane is the second most important greenhouse gas contributing to about 20% of global warming. Its mitigation is conducted by methane oxidizing bacteria that act as a biofilter using methane as their energy and carbon source. Since their first discovery in 1906, methanotrophs have been studied using a complementary array of methods. One of the most used molecular methods involves PCR amplification of the functional gene marker for the diagnostic of copper and iron containing particulate methane monooxygenase. To investigate the diversity of methanotrophs and to extend their possible molecular detection, we designed a new set of degenerate methane monooxygenase primers to target an 850 nucleotide long sequence stretch from pmoC to pmoA. The primers were based on all available full genomic pmoCAB operons. The newly designed primers were tested on various pure cultures, enrichment cultures and environmental samples using PCR. The results demonstrated that this primer set has the ability to correctly amplify the about 850 nucleotide long pmoCA product from Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia and the NC10 phyla methanotrophs. The new primer set will thus be a valuable tool to screen ecosystems and can be applied in conjunction with previously used pmoA primers to extend the diversity of currently known methane-oxidizing bacteria.

9.
Microbiologyopen ; 6(4)2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28544522

RESUMO

The biological nitrogen cycle is driven by a plethora of reactions transforming nitrogen compounds between various redox states. Here, we investigated the metagenomic potential for nitrogen cycle of the in situ microbial community in an oligotrophic, brackish environment of the Bothnian Sea sediment. Total DNA from three sediment depths was isolated and sequenced. The characterization of the total community was performed based on 16S rRNA gene inventory using SILVA database as reference. The diversity of diagnostic functional genes coding for nitrate reductases (napA;narG), nitrite:nitrate oxidoreductase (nxrA), nitrite reductases (nirK;nirS;nrfA), nitric oxide reductase (nor), nitrous oxide reductase (nosZ), hydrazine synthase (hzsA), ammonia monooxygenase (amoA), hydroxylamine oxidoreductase (hao), and nitrogenase (nifH) was analyzed by blastx against curated reference databases. In addition, Polymerase chain reaction (PCR)-based amplification was performed on the hzsA gene of anammox bacteria. Our results reveal high genomic potential for full denitrification to N2 , but minor importance of anaerobic ammonium oxidation and dissimilatory nitrite reduction to ammonium. Genomic potential for aerobic ammonia oxidation was dominated by Thaumarchaeota. A higher diversity of anammox bacteria was detected in metagenomes than with PCR-based technique. The results reveal the importance of various N-cycle driving processes and highlight the advantage of metagenomics in detection of novel microbial key players.


Assuntos
Archaea/enzimologia , Bactérias/enzimologia , Biota , Sedimentos Geológicos/microbiologia , Ciclo do Nitrogênio , Nitrogênio/metabolismo , Aerobiose , Anaerobiose , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Análise por Conglomerados , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Metagenoma , Oceanos e Mares , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
10.
Appl Microbiol Biotechnol ; 101(4): 1631-1641, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28084539

RESUMO

The nitrogen and methane cycles are important biogeochemical processes. Recently, 'Candidatus Methanoperedens nitroreducens,' archaea that catalyze nitrate-dependent anaerobic oxidation of methane (AOM), were enriched, and their genomes were analyzed. Diagnostic molecular tools for the sensitive detection of 'Candidatus M. nitroreducens' are not yet available. Here, we report the design of two novel mcrA primer combinations that specifically target the alpha sub-unit of the methyl-coenzyme M reductase (mcrA) gene of 'Candidatus M. nitroreducens'. The first primer pair produces a fragment of 186-bp that can be used to quantify 'Candidatus M. nitroreducens' cells, whereas the second primer pair yields an 1191-bp amplicon that is with sufficient length and well suited for more detailed phylogenetic analyses. Six different environmental samples were evaluated with the new qPCR primer pair, and the abundances were compared with those determined using primers for the 16S rRNA gene. The qPCR results indicated that the number of copies of the 'Candidatus M. nitroreducens' mcrA gene was highest in rice field soil, with 5.6 ± 0.8 × 106 copies g-1 wet weight, whereas Indonesian river sediment had only 4.6 ± 2.7 × 102 copies g-1 wet weight. In addition to freshwater environments, sequences were also detected in marine sediment of the North Sea, which contained approximately 2.5 ± 0.7 × 104 copies g-1 wet weight. Phylogenetic analysis revealed that the amplified 1191-bp mcrA gene sequences from the different environments all clustered together with available genome sequences of mcrA from known 'Candidatus M. nitroreducens' archaea. Taken together, these results demonstrate the validity and utility of the new primers for the quantitative and sensitive detection of the mcrA gene sequences of these important nitrate-dependent AOM archaea. Furthermore, the newly obtained mcrA sequences will contribute to greater phylogenetic resolution of 'Candidatus M. nitroreducens' sequences, which have been only poorly captured by general methanogenic mcrA primers.


Assuntos
Archaea/enzimologia , Oxirredutases/metabolismo , Archaea/genética , Metano/metabolismo , Oxirredutases/genética , Filogenia , RNA Ribossômico 16S/genética
11.
Environ Microbiol Rep ; 8(6): 941-955, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27753265

RESUMO

Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.


Assuntos
Bactérias/metabolismo , Metano/metabolismo , Methanosarcinales/metabolismo , Nitratos/metabolismo , Nitritos/metabolismo , Anaerobiose , Oxirredução
12.
PeerJ ; 4: e1924, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27077014

RESUMO

Oxygen minimum zones (OMZ) are areas in the global ocean where oxygen concentrations drop to below one percent. Low oxygen concentrations allow alternative respiration with nitrate and nitrite as electron acceptor to become prevalent in these areas, making them main contributors to oceanic nitrogen loss. The contribution of anammox and denitrification to nitrogen loss seems to vary in different OMZs. In the Arabian Sea, both processes were reported. Here, we performed a metagenomics study of the upper and core zone of the Arabian Sea OMZ, to provide a comprehensive overview of the genetic potential for nitrogen and methane cycling. We propose that aerobic ammonium oxidation is carried out by a diverse community of Thaumarchaeota in the upper zone of the OMZ, whereas a low diversity of Scalindua-like anammox bacteria contribute significantly to nitrogen loss in the core zone. Aerobic nitrite oxidation in the OMZ seems to be performed by Nitrospina spp. and a novel lineage of nitrite oxidizing organisms that is present in roughly equal abundance as Nitrospina. Dissimilatory nitrate reduction to ammonia (DNRA) can be carried out by yet unknown microorganisms harbouring a divergent nrfA gene. The metagenomes do not provide conclusive evidence for active methane cycling; however, a low abundance of novel alkane monooxygenase diversity was detected. Taken together, our approach confirmed the genomic potential for an active nitrogen cycle in the Arabian Sea and allowed detection of hitherto overlooked lineages of carbon and nitrogen cycle bacteria.

13.
FEMS Microbiol Ecol ; 91(11)2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26449384

RESUMO

The restoration of peatlands is an important strategy to counteract subsidence and loss of biodiversity. However, responses of important microbial soil processes are poorly understood. We assessed functioning, diversity and spatial organization of methanotrophic communities in drained and rewetted peat meadows with different water table management and agricultural practice. Results show that the methanotrophic diversity was similar between drained and rewetted sites with a remarkable dominance of the genus Methylocystis. Enzyme kinetics depicted no major differences, indicating flexibility in the methane (CH4) concentrations that can be used by the methanotrophic community. Short-term flooding led to temporary elevated CH4 emission but to neither major changes in abundances of methane-oxidizing bacteria (MOB) nor major changes in CH4 consumption kinetics in drained agriculturally used peat meadows. Radiolabeling and autoradiographic imaging of intact soil cores revealed a markedly different spatial arrangement of the CH4 consuming zone in cores exposed to near-atmospheric and elevated CH4. The observed spatial patterns of CH4 consumption in drained peat meadows with and without short-term flooding highlighted the spatial complexity and responsiveness of the CH4 consuming zone upon environmental change. The methanotrophic microbial community is not generally altered and harbors MOB that can cover a large range of CH4 concentrations offered due to water-table fluctuations, effectively mitigating CH4 emissions.


Assuntos
Pradaria , Methylococcaceae/classificação , Microbiologia do Solo , Agricultura , Biodiversidade , Inundações , Metano/metabolismo , Methylococcaceae/metabolismo , Methylocystaceae/metabolismo , Países Baixos , Solo
14.
Environ Microbiol ; 17(5): 1721-37, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25186436

RESUMO

Aerobic methane-oxidizing bacteria (MOB) in soils mitigate methane (CH4 ) emissions. We assessed spatial and seasonal differences in active MOB communities in a landfill cover soil characterized by highly variable environmental conditions. Field-based measurements of CH4 oxidation activity and stable-isotope probing of polar lipid-derived fatty acids (PLFA-SIP) were complemented by microarray analysis of pmoA genes and transcripts, linking diversity and function at the field scale. In situ CH4 oxidation rates varied between sites and were generally one order of magnitude lower in winter compared with summer. Results from PLFA-SIP and pmoA transcripts were largely congruent, revealing distinct spatial and seasonal clustering. Overall, active MOB communities were highly diverse. Type Ia MOB, specifically Methylomonas and Methylobacter, were key drivers for CH4 oxidation, particularly at a high-activity site. Type II MOB were mainly active at a site showing substantial fluctuations in CH4 loading and soil moisture content. Notably, Upland Soil Cluster-gamma-related pmoA transcripts were also detected, indicating concurrent oxidation of atmospheric CH4 . Spatial separation was less distinct in winter, with Methylobacter and uncultured MOB mediating CH4 oxidation. We propose that high diversity of active MOB communities in this soil is promoted by high variability in environmental conditions, facilitating substantial removal of CH4 generated in the waste body.


Assuntos
Metano/metabolismo , Methylomonas/metabolismo , Microbiologia do Solo , Instalações de Eliminação de Resíduos , Ácidos Graxos/metabolismo , Methylomonas/classificação , Methylomonas/genética , Oxirredução , Estações do Ano
15.
Appl Environ Microbiol ; 80(19): 5944-54, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25063667

RESUMO

A complex system of muddy fluid-discharging and methane (CH4)-releasing seeps was discovered in a valley of the river Mukhrinskaya, one of the small rivers of the Irtysh Basin, West Siberia. CH4 flux from most (90%) of these gas ebullition sites did not exceed 1.45 g CH4 h(-1), while some seeps emitted up to 5.54 g CH4 h(-1). The δ(13)C value of methane released from these seeps varied between -71.1 and -71.3‰, suggesting its biogenic origin. Although the seeps were characterized by low in situ temperatures (3.5 to 5°C), relatively high rates of methane oxidation (15.5 to 15.9 nmol CH4 ml(-1) day(-1)) were measured in mud samples. Fluorescence in situ hybridization detected 10(7) methanotrophic bacteria (MB) per g of mud (dry weight), which accounted for up to 20.5% of total bacterial cell counts. Most (95.8 to 99.3%) methanotroph cells were type I (gammaproteobacterial) MB. The diversity of methanotrophs in this habitat was further assessed by pyrosequencing of pmoA genes, encoding particulate methane monooxygenase. A total of 53,828 pmoA gene sequences of seep-inhabiting methanotrophs were retrieved and analyzed. Nearly all of these sequences affiliated with type I MB, including the Methylobacter-Methylovulum-Methylosoma group, lake cluster 2, and several as-yet-uncharacterized methanotroph clades. Apparently, microbial communities attenuating methane fluxes from these local but strong CH4 sources in floodplains of high-latitude rivers have a large proportion of potentially novel, psychrotolerant methanotrophs, thereby providing a challenge for future isolation studies.


Assuntos
Gammaproteobacteria/isolamento & purificação , Metano/metabolismo , Oxigenases/genética , Proteínas de Bactérias/genética , Sequência de Bases , Temperatura Baixa , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/fisiologia , Sequenciamento de Nucleotídeos em Larga Escala , Hibridização in Situ Fluorescente , Metano/química , Methylococcaceae/genética , Methylococcaceae/isolamento & purificação , Methylococcaceae/fisiologia , Dados de Sequência Molecular , Oxirredução , Filogenia , Rios , Análise de Sequência de DNA , Sibéria
16.
Environ Microbiol ; 16(1): 72-83, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24914433

RESUMO

Studies addressing microbial biogeography haveincreased during the past decade, but research onmicrobial distribution patterns is still in its infancies,and many aspects are only poorly understood. Here,we compared the methanotroph community in paddysoils sampled in Indonesia, Vietnam, China and Italy,focusing on the distance­decay relationship.We usedthe pmoA gene as marker for methanotroph diversityin terminal restriction fragment length polymorphism,microarray and pyrosequencing approaches. Wecould observe a significant increase of ß-diversity with geographical distance across continents (12 000 km).Measured environmental parameters explained only asmall amount of data variation, and we found no evidencefor dispersal limitation. Thus, we propose historicalcontingencies being responsible for theobserved patterns. Furthermore, we performed anin-depth analysis of type II methanotroph pmoA distributionat the sequence level. We used ordinationanalysis to project sequence dissimilarities into athree-dimensional space (multidimensional scaling).The ordination suggests that type II methanotrophs inpaddy fields can be divided into five major groups.However, these groups were found to be distributed inall soils independent of the geographic origin. Byincluding tropical field sites (Indonesia and Vietnam)into the analysis, we further observed the firstpaddy fields harbouring a methanotroph communitydepleted in type II methanotrophs.


Assuntos
Methylococcaceae/classificação , Methylococcaceae/genética , Oryza , Microbiologia do Solo , Biodiversidade , Ecossistema , Genótipo , Oxigenases/genética , Clima Tropical
17.
Environ Microbiol Rep ; 5(4): 566-74, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23864571

RESUMO

The Zoige Plateau is characterized by its high altitude, low latitude and low annual mean temperature of approximately 1°C and is a major source of atmospheric methane in the Qinghai-Tibetan Plateau. Methanotrophs play an important role in the global cycling of CH4, but the diversity, identity and activity of methanotrophs in this region are poorly characterized. Soils were collected from hummocks and hollows in the Riganqiao peatland and the methanotroph community was analysed by qPCR and sequencing methane monooxygenase (pmoA and mmoX) genes. The pmoA genes ranged between 10(7) and 10(8) copies g(-1) fresh soil, with a somewhat greater abundance in hummocks than hollows. The pmoA genes were analysed by amplicon pyrosequencing and the mmoX genes by cloning and sequencing. Methylocystis species were found to be the most abundant methanotrophs, but numerous clades were present including three novel pmoA and three novel mmoX clusters. There were differences between the methanotroph communities in the hummocks and hollows, with the most significant being an increased abundance of uncultivated type Ib methanotrophs in the hollows. The results indicate that aerobic methanotrophs are abundant in Riganqiao peatland and include previously undetected clades in this geographically isolated and distinctive environment.


Assuntos
Bactérias Aeróbias/classificação , Bactérias Aeróbias/metabolismo , Biota , Metano/metabolismo , Microbiologia do Solo , Bactérias Aeróbias/genética , Análise por Conglomerados , Dados de Sequência Molecular , Oxigenases/genética , Filogenia , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Tibet
18.
Environ Microbiol Rep ; 5(3): 335-45, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754714

RESUMO

Methane-oxidizing bacteria (MOB) possess the ability to use methane for energy generation and growth, thereby, providing a key ecosystem service that is highly relevant to the regulation of the global climate. MOB subgroups have different responses to key environmental controls, reflecting on their functional traits. Their unique features (C1-metabolism, unique lipids and congruence between the 16S rRNA and pmoA gene phylogeny) have facilitated numerous environmental studies, which in combination with the availability of cultured representatives, yield the most comprehensive ecological picture of any known microbial functional guild. Here, we focus on the broad MOB subgroups (type I and type II MOB), and aim to conceptualize MOB functional traits and observational characteristics derived primarily from these environmental studies to be interpreted as microbial life strategies. We focus on the functional traits, and the conditions under which these traits will render different MOB subgroups a selective advantage. We hypothesize that type I and type II MOB generally have distinct life strategies, enabling them to predominate under different conditions and maintain functionality. The ecological characteristics implicated in their adopted life strategies are discussed, and incorporated into the Competitor-Stress tolerator-Ruderal functional classification framework as put forward for plant communities. In this context, type I MOB can broadly be classified as competitor-ruderal while type II MOB fit more within the stress tolerator categories. Finally, we provide an outlook on MOB applications by exemplifying two approaches where their inferred life strategies could be exploited thereby, putting MOB into the context of microbial resource management.


Assuntos
Fenômenos Fisiológicos Bacterianos , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Methylococcaceae/genética , RNA Ribossômico 16S/genética , Adaptação Fisiológica , Clima , Ecossistema , Methylococcaceae/classificação , Methylococcaceae/metabolismo , Filogenia , RNA Ribossômico 16S/classificação , Estresse Fisiológico
19.
ISME J ; 6(11): 2128-39, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22695859

RESUMO

Aerobic methane-oxidizing bacteria (MOB) use a restricted substrate range, yet >30 species-equivalent operational taxonomical units (OTUs) are found in one paddy soil. How these OTUs physically share their microhabitat is unknown. Here we highly resolved the vertical distribution of MOB and their activity. Using microcosms and cryosectioning, we sub-sampled the top 3-mm of a water-saturated soil at near in situ conditions in 100-µm steps. We assessed the community structure and activity using the particulate methane monooxygenase gene pmoA as a functional and phylogenetic marker by terminal restriction fragment length polymorphism (t-RFLP), a pmoA-specific diagnostic microarray, and cloning and sequencing. pmoA genes and transcripts were quantified using competitive reverse transcriptase PCR combined with t-RFLP. Only a subset of the methanotroph community was active. Oxygen microprofiles showed that 89% of total respiration was confined to a 0.67-mm-thick zone immediately above the oxic-anoxic interface, most probably driven by methane oxidation. In this zone, a Methylobacter-affiliated OTU was highly active with up to 18 pmoA transcripts per cell and seemed to be adapted to oxygen and methane concentrations in the micromolar range. Analysis of transcripts with a pmoA-specific microarray found a Methylosarcina-affiliated OTU associated with the surface zone. High oxygen but only nanomolar methane concentrations at the surface suggested an adaptation of this OTU to oligotrophic conditions. No transcripts of type II methanotrophs (Methylosinus, Methylocystis) were found, which indicated that this group was represented by resting stages only. Hence, different OTUs within a single guild shared the same microenvironment and exploited different niches.


Assuntos
Methylococcaceae/isolamento & purificação , Microbiologia do Solo , Ecossistema , Methylococcaceae/genética , Methylococcaceae/metabolismo , Análise em Microsséries , Oryza , Oxigenases/genética , Filogenia , Polimorfismo de Fragmento de Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Solo/química
20.
FEMS Microbiol Ecol ; 81(1): 52-65, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22172054

RESUMO

In landfill-cover soils, aerobic methane-oxidizing bacteria (MOB) convert CH(4) to CO(2), mitigating emissions of the greenhouse gas CH(4) to the atmosphere. We investigated overall MOB community structure and assessed spatial differences in MOB diversity, abundance and activity in a Swiss landfill-cover soil. Molecular cloning, terminal restriction-fragment length polymorphism (T-RFLP) and quantitative PCR of pmoA genes were applied to soil collected from 16 locations at three different depths to study MOB community structure, diversity and abundance; MOB activity was measured in the field using gas push-pull tests. The MOB community was highly diverse but dominated by Type Ia MOB, with novel pmoA sequences present. Type II MOB were detected mainly in deeper soil with lower nutrient and higher CH(4) concentrations. Substantial differences in MOB community structure were observed between one high- and one low-activity location. MOB abundance was highly variable across the site [4.0 × 10(4) to 1.1 × 10(7) (g soil dry weight)(-1)]. Potential CH(4) oxidation rates were high [1.8-58.2 mmol CH(4) (L soil air)(-1) day(-1) ] but showed significant lateral variation and were positively correlated with mean CH(4) concentrations (P < 0.01), MOB abundance (P < 0.05) and MOB diversity (weak correlation, P < 0.17). Our findings indicate that Methylosarcina and closely related MOB are key players and that MOB abundance and community structure are driving factors in CH(4) oxidation at this landfill.


Assuntos
Methylococcaceae/classificação , Methylococcaceae/metabolismo , Eliminação de Resíduos , Microbiologia do Solo , Biodiversidade , Metano/análise , Methylococcaceae/genética , Methylococcaceae/isolamento & purificação , Oxirredução , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...