Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38626354

RESUMO

RATIONALE: Immune checkpoint inhibitor-related pneumonitis is a serious autoimmune event affecting up to 20% of patients with non-small cell lung cancer, yet the factors underpinning its development in some patients and not others are poorly understood. OBJECTIVES: To investigate the role of autoantibodies and autoreactive T cells against surfactant-related proteins in the development of pneumonitis. METHODS: The study cohort consisted of non-small cell lung cancer patients who gave blood samples before and during immune checkpoint inhibitor treatment. Serum was used for proteomics analyses and to detect autoantibodies present during pneumonitis. T cell stimulation assays and single-cell RNA sequencing were performed to investigate the specificity and functionality of peripheral autoreactive T cells. The findings were confirmed in a validation cohort comprising patients with non-small cell lung cancer and patients with melanoma. MEASUREMENTS AND MAIN RESULTS: Across both cohorts, patients who developed pneumonitis had higher pre-treatment levels of immunoglobulin G autoantibodies targeting surfactant protein-B. At the onset of pneumonitis, these patients also exhibited higher frequencies of CD4+ interferon-gamma-positive surfactant protein B-specific T cells, and expanding T cell clonotypes recognizing this protein, accompanied by a pro-inflammatory serum proteomic profile. CONCLUSIONS: Our data suggest that the co-occurrence of surfactant protein-B-specific immunoglobulin G autoantibodies and CD4+ T cells is associated with the development of pneumonitis during ICI therapy. Pre-treatment levels of these antibodies may represent a potential biomarker for elevated risk of developing pneumonitis and on-treatment levels may provide a diagnostic aid. This article is open access and distributed under the terms of the Creative Commons Attribution Non-Commercial No Derivatives License 4.0 (http://creativecommons.org/licenses/by-nc-nd/4.0/).

2.
Nat Immunol ; 24(7): 1149-1160, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202489

RESUMO

B cell zone reticular cells (BRCs) form stable microenvironments that direct efficient humoral immunity with B cell priming and memory maintenance being orchestrated across lymphoid organs. However, a comprehensive understanding of systemic humoral immunity is hampered by the lack of knowledge of global BRC sustenance, function and major pathways controlling BRC-immune cell interactions. Here we dissected the BRC landscape and immune cell interactome in human and murine lymphoid organs. In addition to the major BRC subsets underpinning the follicle, including follicular dendritic cells, PI16+ RCs were present across organs and species. As well as BRC-produced niche factors, immune cell-driven BRC differentiation and activation programs governed the convergence of shared BRC subsets, overwriting tissue-specific gene signatures. Our data reveal that a canonical set of immune cell-provided cues enforce bidirectional signaling programs that sustain functional BRC niches across lymphoid organs and species, thereby securing efficient humoral immunity.


Assuntos
Linfócitos B , Células Estromais , Camundongos , Humanos , Animais , Imunidade Humoral , Células Dendríticas Foliculares , Homeostase
3.
Nat Immunol ; 24(7): 1138-1148, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37202490

RESUMO

Fibroblastic reticular cells (FRCs) direct the interaction and activation of immune cells in discrete microenvironments of lymphoid organs. Despite their important role in steering innate and adaptive immunity, the age- and inflammation-associated changes in the molecular identity and functional properties of human FRCs have remained largely unknown. Here, we show that human tonsillar FRCs undergo dynamic reprogramming during life and respond vigorously to inflammatory perturbation in comparison to other stromal cell types. The peptidase inhibitor 16 (PI16)-expressing reticular cell (PI16+ RC) subset of adult tonsils exhibited the strongest inflammation-associated structural remodeling. Interactome analysis combined with ex vivo and in vitro validation revealed that T cell activity within subepithelial niches is controlled by distinct molecular pathways during PI16+ RC-lymphocyte interaction. In sum, the topological and molecular definition of the human tonsillar stromal cell landscape reveals PI16+ RCs as a specialized FRC niche at the core of mucosal immune responses in the oropharynx.


Assuntos
Tonsila Palatina , Linfócitos T , Humanos , Fibroblastos , Linfócitos/metabolismo , Inflamação/metabolismo , Proteínas de Transporte/metabolismo , Glicoproteínas/metabolismo
4.
Eur J Immunol ; 53(9): e2250355, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-36991561

RESUMO

The lymph node (LN) is home to resident macrophage populations that are essential for immune function and homeostasis, but key factors controlling this niche are undefined. Here, we show that fibroblastic reticular cells (FRCs) are an essential component of the LN macrophage niche. Genetic ablation of FRCs caused rapid loss of macrophages and monocytes from LNs across two in vivo models. Macrophages co-localized with FRCs in human LNs, and murine single-cell RNA-sequencing revealed that FRC subsets broadly expressed master macrophage regulator CSF1. Functional assays containing purified FRCs and monocytes showed that CSF1R signaling was sufficient to support macrophage development. These effects were conserved between mouse and human systems. These data indicate an important role for FRCs in maintaining the LN parenchymal macrophage niche.


Assuntos
Fibroblastos , Transdução de Sinais , Camundongos , Humanos , Animais , Macrófagos , Linfonodos
5.
bioRxiv ; 2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36798373

RESUMO

Non-hematopoietic lymph node stromal cells (LNSCs) regulate lymphocyte trafficking, survival, and function for key roles in host defense, autoimmunity, alloimmunity, and lymphoproliferative disorders. However, study of LNSCs in human diseases is complicated by a dependence on viable lymphoid tissues, which are most often excised prior to establishment of a specific diagnosis. Here, we demonstrate that cryopreservation can be used to bank lymphoid tissue for the study of LNSCs in human disease. Using human tonsils, lymphoid tissue fragments were cryopreserved for subsequent enzymatic digestion and recovery of viable non-hematopoietic cells. Flow cytometry and single-cell transcriptomics identified comparable proportions of LNSC cell types in fresh and cryopreserved tissue. Moreover, cryopreservation had little effect on transcriptional profiles, which showed significant overlap between tonsils and lymph nodes. The presence and spatial distribution of transcriptionally defined cell types was confirmed by in situ analyses. Our broadly applicable approach promises to greatly enable research into the roles of LNSC in human disease.

6.
J Immunol ; 210(6): 774-785, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36715496

RESUMO

Hallmarks of life-threatening, coronavirus-induced disease include dysregulated antiviral immunity and immunopathological tissue injury. Nevertheless, the sampling of symptomatic patients overlooks the initial inflammatory sequela culminating in severe coronavirus-induced disease, leaving a fundamental gap in our understanding of the early mechanisms regulating anticoronavirus immunity and preservation of tissue integrity. In this study, we delineate the innate regulators controlling pulmonary infection using a natural mouse coronavirus. Within hours of infection, the cellular landscape of the lung was transcriptionally remodeled altering host metabolism, protein synthesis, and macrophage maturation. Genetic perturbation revealed that these transcriptional programs were type I IFN dependent and critically controlled both host cell survival and viral spread. Unrestricted viral replication overshooting protective IFN responses culminated in increased IL-1ß and alarmin production and triggered compensatory neutrophilia, interstitial inflammation, and vascular injury. Thus, type I IFNs critically regulate early viral burden, which serves as an innate checkpoint determining the trajectory of coronavirus dissemination and immunopathology.


Assuntos
Infecções por Coronavirus , Interferon Tipo I , Vírus da Hepatite Murina , Pneumonia , Animais , Camundongos , Imunidade Inata , Antivirais/farmacologia , Replicação Viral
7.
Nat Commun ; 13(1): 2027, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35440118

RESUMO

Innate lymphoid cells (ILCs) govern immune cell homeostasis in the intestine and protect the host against microbial pathogens. Various cell-intrinsic pathways have been identified that determine ILC development and differentiation. However, the cellular components that regulate ILC sustenance and function in the intestinal lamina propria are less known. Using single-cell transcriptomic analysis of lamina propria fibroblasts, we identify fibroblastic reticular cells (FRCs) that underpin cryptopatches (CPs) and isolated lymphoid follicles (ILFs). Genetic ablation of lymphotoxin-ß receptor expression in Ccl19-expressing FRCs blocks the maturation of CPs into mature ILFs. Interactome analysis shows the major niche factors and processes underlying FRC-ILC crosstalk. In vivo validation confirms that a sustained lymphotoxin-driven feedforward loop of FRC activation including IL-7 generation is critical for the maintenance of functional ILC populations. In sum, our study indicates critical fibroblastic niches within the intestinal lamina propria that control ILC homeostasis and functionality and thereby secure protective gut immunity.


Assuntos
Imunidade Inata , Linfócitos , Fibroblastos , Homeostase , Intestinos
8.
Oncoimmunology ; 10(1): 1945202, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34367729

RESUMO

Squamous cell carcinoma of the tonsil is one of the most frequent cancers of the oropharynx. The escalating rate of tonsil cancer during the last decades is associated with the increase of high risk-human papilloma virus (HR-HPV) infections. While the microbiome in oropharyngeal malignant diseases has been characterized to some extent, the microbial colonization of HR-HPV-associated tonsil cancer remains largely unknown. Using 16S rRNA gene amplicon sequencing, we have characterized the microbiome of human palatine tonsil crypts in patients suffering from HR-HPV-associated tonsil cancer in comparison to a control cohort of adult sleep apnea patients. We found an increased abundance of the phyla Firmicutes and Actinobacteria in tumor patients, whereas the abundance of Spirochetes and Synergistetes was significantly higher in the control cohort. Furthermore, the accumulation of several genera such as Veillonella, Streptococcus and Prevotella_7 in tonsillar crypts was associated with tonsil cancer. In contrast, Fusobacterium, Prevotella and Treponema_2 were enriched in sleep apnea patients. Machine learning-based bacterial species analysis indicated that a particular bacterial composition in tonsillar crypts is tumor-predictive. Species-specific PCR-based validation in extended patient cohorts confirmed that differential abundance of Filifactor alocis and Prevotella melaninogenica is a distinct trait of tonsil cancer. This study shows that tonsil cancer patients harbor a characteristic microbiome in the crypt environment that differs from the microbiome of sleep apnea patients on all phylogenetic levels. Moreover, our analysis indicates that profiling of microbial communities in distinct tonsillar niches provides microbiome-based avenues for the diagnosis of tonsil cancer.


Assuntos
Carcinoma de Células Escamosas , Microbiota , Neoplasias Tonsilares , Clostridiales , Humanos , Microbiota/genética , Filogenia , RNA Ribossômico 16S/genética
9.
Nat Commun ; 12(1): 4734, 2021 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-34354077

RESUMO

The tumor microenvironment (TME) is a complex amalgam of tumor cells, immune cells, endothelial cells and fibroblastic stromal cells (FSC). Cancer-associated fibroblasts are generally seen as tumor-promoting entity. However, it is conceivable that particular FSC populations within the TME contribute to immune-mediated tumor control. Here, we show that intratumoral treatment of mice with a recombinant lymphocytic choriomeningitis virus-based vaccine vector expressing a melanocyte differentiation antigen resulted in T cell-dependent long-term control of melanomas. Using single-cell RNA-seq analysis, we demonstrate that viral vector-mediated transduction reprogrammed and activated a Cxcl13-expressing FSC subset that show a pronounced immunostimulatory signature and increased expression of the inflammatory cytokine IL-33. Ablation of Il33 gene expression in Cxcl13-Cre-positive FSCs reduces the functionality of intratumoral T cells and unleashes tumor growth. Thus, reprogramming of FSCs by a self-antigen-expressing viral vector in the TME is critical for curative melanoma treatment by locally sustaining the activity of tumor-specific T cells.


Assuntos
Melanoma Experimental/terapia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Fibroblastos Associados a Câncer/imunologia , Fibroblastos Associados a Câncer/patologia , Técnicas de Reprogramação Celular/métodos , Quimiocina CXCL13/genética , Quimiocina CXCL13/imunologia , Feminino , Vetores Genéticos , Interleucina-33/deficiência , Interleucina-33/genética , Interleucina-33/imunologia , Oxirredutases Intramoleculares/genética , Oxirredutases Intramoleculares/imunologia , Vírus da Coriomeningite Linfocítica/genética , Melanoma Experimental/imunologia , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Células Estromais/imunologia , Células Estromais/patologia , Linfócitos T/imunologia , Linfócitos T/patologia , Microambiente Tumoral/imunologia
10.
Nat Immunol ; 22(8): 1042-1051, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34267375

RESUMO

Pathogens and vaccines that produce persisting antigens can generate expanded pools of effector memory CD8+ T cells, described as memory inflation. While properties of inflating memory CD8+ T cells have been characterized, the specific cell types and tissue factors responsible for their maintenance remain elusive. Here, we show that clinically applied adenovirus vectors preferentially target fibroblastic stromal cells in cultured human tissues. Moreover, we used cell-type-specific antigen targeting to define critical cells and molecules that sustain long-term antigen presentation and T cell activity after adenovirus vector immunization in mice. While antigen targeting to myeloid cells was insufficient to activate antigen-specific CD8+ T cells, genetic activation of antigen expression in Ccl19-cre-expressing fibroblastic stromal cells induced inflating CD8+ T cells. Local ablation of vector-targeted cells revealed that lung fibroblasts support the protective function and metabolic fitness of inflating memory CD8+ T cells in an interleukin (IL)-33-dependent manner. Collectively, these data define a critical fibroblastic niche that underpins robust protective immunity operating in a clinically important vaccine platform.


Assuntos
Adenoviridae/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica/imunologia , Interleucina-33/imunologia , Ativação Linfocitária/imunologia , Células Estromais/imunologia , Adenoviridae/genética , Animais , Linhagem Celular Tumoral , Quimiocina CCL19/metabolismo , Quimera/genética , Epitopos de Linfócito T/imunologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Vetores Genéticos/imunologia , Humanos , Pulmão/citologia , Melanoma Experimental/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vacinação
11.
Immunol Rev ; 302(1): 32-46, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34046914

RESUMO

Secondary lymphoid organs (SLO) are underpinned by fibroblastic reticular cells (FRC) that form dedicated microenvironmental niches to secure induction and regulation of innate and adaptive immunity. Distinct FRC subsets are strategically positioned in SLOs to provide niche factors and govern efficient immune cell interaction. In recent years, the use of specialized mouse models in combination with single-cell transcriptomics has facilitated the elaboration of the molecular FRC landscape at an unprecedented resolution. While single-cell RNA-sequencing has advanced the resolution of FRC subset characterization and function, the high dimensionality of the generated data necessitates careful analysis and validation. Here, we reviewed novel findings from high-resolution transcriptomic analyses that refine our understanding of FRC differentiation and activation processes in the context of infection and inflammation. We further discuss concepts, strategies, and limitations for the analysis of single-cell transcriptome data from FRCs and the wide-ranging implications for our understanding of stromal cell biology.


Assuntos
Fibroblastos , Células Estromais , Imunidade Adaptativa , Animais , Comunicação Celular , Diferenciação Celular , Linfonodos , Camundongos
12.
Nat Immunol ; 22(4): 510-519, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33707780

RESUMO

Fibroblastic reticular cells (FRCs) determine the organization of lymphoid organs and control immune cell interactions. While the cellular and molecular mechanisms underlying FRC differentiation in lymph nodes and the splenic white pulp have been elaborated to some extent, in Peyer's patches (PPs) they remain elusive. Using a combination of single-cell transcriptomics and cell fate mapping in advanced mouse models, we found that PP formation in the mouse embryo is initiated by an expansion of perivascular FRC precursors, followed by FRC differentiation from subepithelial progenitors. Single-cell transcriptomics and cell fate mapping confirmed the convergence of perivascular and subepithelial FRC lineages. Furthermore, lineage-specific loss- and gain-of-function approaches revealed that the two FRC lineages synergistically direct PP organization, maintain intestinal microbiome homeostasis and control anticoronavirus immune responses in the gut. Collectively, this study reveals a distinct mosaic patterning program that generates key stromal cell infrastructures for the control of intestinal immunity.


Assuntos
Linhagem da Célula , Fibroblastos/imunologia , Imunidade nas Mucosas , Mucosa Intestinal/imunologia , Intestino Delgado/imunologia , Nódulos Linfáticos Agregados/imunologia , Animais , Comunicação Celular , Células Cultivadas , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Modelos Animais de Doenças , Fibroblastos/metabolismo , Microbioma Gastrointestinal , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Interações Hospedeiro-Patógeno , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/virologia , Intestino Delgado/metabolismo , Intestino Delgado/microbiologia , Intestino Delgado/virologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Vírus da Hepatite Murina/imunologia , Vírus da Hepatite Murina/patogenicidade , Nódulos Linfáticos Agregados/metabolismo , Nódulos Linfáticos Agregados/microbiologia , Nódulos Linfáticos Agregados/virologia , Fenótipo , Análise de Célula Única , Transcriptoma
13.
Sci Immunol ; 5(51)2020 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-32917792

RESUMO

Fibroblastic reticular cells (FRCs) are stromal cells that actively promote the induction of immune responses by coordinating the interaction of innate and adaptive immune cells. However, whether and to which extent immune cell activation is determined by lymph node FRC reprogramming during acute viral infection has remained unexplored. Here, we genetically ablated expression of the type I interferon-α receptor (Ifnar) in Ccl19-Cre+ cells and found that sensing of type I interferon imprints an antiviral state in FRCs and thereby preserves myeloid cell composition in lymph nodes of naive mice. During localized lymphocytic choriomeningitis virus infection, IFNAR signaling precipitated profound phenotypic adaptation of all FRC subsets enhancing antigen presentation, chemokine-driven immune cell recruitment, and immune regulation. The IFNAR-dependent shift of all FRC subsets toward an immunostimulatory state reduced exhaustive CD8+ T cell activation. In sum, these results unveil intricate circuits underlying type I IFN sensing in lymph node FRCs that enable protective antiviral immunity.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Fibroblastos/imunologia , Interferon Tipo I/imunologia , Coriomeningite Linfocítica/imunologia , Células Estromais/imunologia , Animais , Linhagem Celular , Interferon gama/imunologia , Vírus da Coriomeningite Linfocítica , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Receptor de Interferon alfa e beta/imunologia , Transdução de Sinais , Fator de Necrose Tumoral alfa/imunologia
14.
Nat Immunol ; 21(6): 649-659, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32424359

RESUMO

Efficient generation of germinal center (GC) responses requires directed movement of B cells between distinct microenvironments underpinned by specialized B cell-interacting reticular cells (BRCs). How BRCs are reprogrammed to cater to the developing GC remains unclear, and studying this process is largely hindered by incomplete resolution of the cellular composition of the B cell follicle. Here we used genetic targeting of Cxcl13-expressing cells to define the molecular identity of the BRC landscape. Single-cell transcriptomic analysis revealed that BRC subset specification was predetermined in the primary B cell follicle. Further topological remodeling of light and dark zone follicular dendritic cells required CXCL12-dependent crosstalk with B cells and dictated GC output by retaining B cells in the follicle and steering their interaction with follicular helper T cells. Together, our results reveal that poised BRC-defined microenvironments establish a feed-forward system that determines the efficacy of the GC reaction.


Assuntos
Escuridão , Células Dendríticas Foliculares/imunologia , Células Dendríticas Foliculares/metabolismo , Centro Germinativo/imunologia , Centro Germinativo/metabolismo , Imunomodulação/efeitos da radiação , Luz , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores , Comunicação Celular , Quimiocina CXCL12/metabolismo , Camundongos , Camundongos Transgênicos , Fenótipo , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
15.
Science ; 366(6467): 881-886, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31727837

RESUMO

Myocarditis can develop into inflammatory cardiomyopathy through chronic stimulation of myosin heavy chain 6-specific T helper (TH)1 and TH17 cells. However, mechanisms governing the cardiotoxicity programming of heart-specific T cells have remained elusive. Using a mouse model of spontaneous autoimmune myocarditis, we show that progression of myocarditis to lethal heart disease depends on cardiac myosin-specific TH17 cells imprinted in the intestine by a commensal Bacteroides species peptide mimic. Both the successful prevention of lethal disease in mice by antibiotic therapy and the significantly elevated Bacteroides-specific CD4+ T cell and B cell responses observed in human myocarditis patients suggest that mimic peptides from commensal bacteria can promote inflammatory cardiomyopathy in genetically susceptible individuals. The ability to restrain cardiotoxic T cells through manipulation of the microbiome thereby transforms inflammatory cardiomyopathy into a targetable disease.


Assuntos
Doenças Autoimunes/complicações , Bacteroides/imunologia , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/microbiologia , Microbioma Gastrointestinal/imunologia , Miocardite/complicações , Peptídeos/imunologia , beta-Galactosidase/imunologia , Animais , Doenças Autoimunes/imunologia , Linfócitos B/imunologia , Linfócitos T CD4-Positivos/imunologia , Modelos Animais de Doenças , Humanos , Intestinos/microbiologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Miocardite/imunologia , Cadeias Pesadas de Miosina/genética , Cadeias Pesadas de Miosina/imunologia , Células Th17/imunologia
16.
Nat Commun ; 10(1): 1739, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30988302

RESUMO

The splenic white pulp is underpinned by poorly characterized stromal cells that demarcate distinct immune cell microenvironments. Here we establish fibroblastic reticular cell (FRC)-specific fate-mapping in mice to define their embryonic origin and differentiation trajectories. Our data show that all reticular cell subsets descend from multipotent progenitors emerging at embryonic day 19.5 from periarterial progenitors. Commitment of FRC progenitors is concluded during the first week of postnatal life through occupation of niches along developing central arterioles. Single cell transcriptomic analysis facilitated deconvolution of FRC differentiation trajectories and indicated that perivascular reticular cells function both as adult lymphoid organizer cells and mural cell progenitors. The lymphotoxin-ß receptor-independent sustenance of postnatal progenitor stemness unveils that systemic immune surveillance in the splenic white pulp is governed through subset specification of reticular cells from a multipotent periarterial progenitor cell. In sum, the finding that discrete signaling events in perivascular niches determine the differentiation trajectories of reticular cell networks explains the development of distinct microenvironmental niches in secondary and tertiary lymphoid tissues that are crucial for the induction and regulation of innate and adaptive immune processes.


Assuntos
Linhagem da Célula , Microambiente Celular , Fibroblastos/fisiologia , Animais , Diferenciação Celular , Perfilação da Expressão Gênica , Vigilância Imunológica , Linfócitos , Camundongos , Baço
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...