Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 132(7): 075101, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38427884

RESUMO

Gyrokinetic simulations of the fishbone instability in DIII-D tokamak plasmas find that self-generated zonal flows can dominate the nonlinear saturation by preventing coherent structures from persisting or drifting in the energetic particle phase space when the mode frequency down-chirps. Results from the simulation with zonal flows agree quantitatively, for the first time, with experimental measurements of the fishbone saturation amplitude and energetic particle transport. Moreover, the fishbone-induced zonal flows are likely responsible for the formation of an internal transport barrier that was observed after fishbone bursts in this DIII-D experiment. Finally, gyrokinetic simulations of a related ITER baseline scenario show that the fishbone induces insignificant energetic particle redistribution and may enable high performance scenarios in ITER burning plasma experiments.

2.
Phys Rev Lett ; 105(20): 205002, 2010 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-21231240

RESUMO

The nonlinear evolution of resonantly driven systems, such as suprathermal particle driven modes in magnetically confined plasmas, is shown to strongly depend on the existence and nature of an underlying damping mechanism. When background resonant damping is present, subcritical states can take place. In particular, purely nonlinear steady-state regimes are found, whose destabilization threshold and saturation levels are calculated and validated using numerical simulations. This nonlinear behavior can be of relevance for acoustic modes in magnetically confined plasmas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...