Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Pollut ; 352: 124097, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38703985

RESUMO

Microplastics (MPs) are pervasive and undergo environmental aging processes, which alters potential interaction with the co-contaminants. Hence, to assess their contaminant-carrying capacity, mimicking the weathering characteristics of secondary MPs is crucial. To this end, the present study investigated the interaction of Zinc oxide (nZnO) nanoparticles with non-irradiated (NI) and UV-irradiated (UI) forms of the most abundant MPs, such as polypropylene (PP) and polystyrene (PS), in aqueous environments. SEM images revealed mechanical abrasions on the surfaces of NI-MPs and their subsequent photoaging caused the formation of close-ended and open-ended cracks in UI-PP and UI-PS, respectively. Batch-sorption experiments elucidated nZnO uptake kinetics by PP and PS MPs, suggesting a sorption-desorption pathway due to weaker and stronger sorption sites until equilibrium was achieved. UI-PP showed higher nZnO (∼3000 mg/kg) uptake compared to NI-PP, while UI-PS showed similar or slightly decreased nZnO (∼2000 mg/kg) uptake compared to NI-PS. FTIR spectra and zeta potential measurements revealed electrostatic interaction as the dominant interaction mechanism. Higher nZnO uptake by MPs was noted between pH 6.5 and 8.5, whereas it decreased beyond this range. Despite DOM, MPs always retained ∼874 mg/kg nZnO irrespective of MPs type and extent of aging. The experimental results in river water showed higher nZnO uptake on MPs compared to DI water, attributed to mutual effect of ionic competition, DOM, and MP hydrophobicity. In the case of humic acids, complex synthetic and natural water matrices, NI-MPs retained more nZnO than UI-MPs, suggesting that photoaged MPs sorb less nZnO under environmental conditions than non-photoaged MPs. These findings enhance our understanding on interaction of the MPs with co-contaminants in natural environments.


Assuntos
Microplásticos , Polipropilenos , Poliestirenos , Poluentes Químicos da Água , Óxido de Zinco , Óxido de Zinco/química , Microplásticos/química , Polipropilenos/química , Poliestirenos/química , Poluentes Químicos da Água/química , Adsorção , Nanopartículas Metálicas/química , Nanopartículas/química
2.
Soft Matter ; 20(6): 1333-1346, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38251414

RESUMO

Cellulose, as a naturally abundant and biocompatible material, is still gaining interest due to its high potential for functionalization. This makes cellulose a promising candidate for replacing plastics. Understanding how cellulose interacts with various additives is crucial for creating composite materials with diverse properties, as it is the case for plastics. In addition, the mechanical properties of the composite materials are assumed to be related to the mobility of the additives against the cellulose. Using a well-defined cellulose model surface (CMS), we aim to understand the adsorption and desorption of two polymeric particles (core-shell particles and microgels) to/from the cellulose surface. The nanomechanics of particles and CMS are quantified by indentation measurements with an atomic force microscope (AFM). AFM topography measurements quantified particle adsorption and desorption on the CMS, while peak force AFM measurements determined the force needed to move individual particles. Both particles and the CMS exhibited pH-dependent charge behavior, allowing a tunable interaction between them. Particle adsorption was irreversible and driven by electrostatic forces. In contrast, desorption and particle mobility forces are dominated by structural morphology. In addition, we found that an annealing procedure consisting of swelling/drying cycles significantly increased the adhesion strength of both particles. Using the data, we achieve a deeper understanding of the interaction of cellulose with polymeric particles, with the potential to advance the development of functional materials and contribute to various fields, including smart packaging, sensors, and biomedical applications.

4.
Chem Rev ; 123(10): 6413-6544, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37186959

RESUMO

Interfacial reactions drive all elemental cycling on Earth and play pivotal roles in human activities such as agriculture, water purification, energy production and storage, environmental contaminant remediation, and nuclear waste repository management. The onset of the 21st century marked the beginning of a more detailed understanding of mineral aqueous interfaces enabled by advances in techniques that use tunable high-flux focused ultrafast laser and X-ray sources to provide near-atomic measurement resolution, as well as by nanofabrication approaches that enable transmission electron microscopy in a liquid cell. This leap into atomic- and nanometer-scale measurements has uncovered scale-dependent phenomena whose reaction thermodynamics, kinetics, and pathways deviate from previous observations made on larger systems. A second key advance is new experimental evidence for what scientists hypothesized but could not test previously, namely, interfacial chemical reactions are frequently driven by "anomalies" or "non-idealities" such as defects, nanoconfinement, and other nontypical chemical structures. Third, progress in computational chemistry has yielded new insights that allow a move beyond simple schematics, leading to a molecular model of these complex interfaces. In combination with surface-sensitive measurements, we have gained knowledge of the interfacial structure and dynamics, including the underlying solid surface and the immediately adjacent water and aqueous ions, enabling a better definition of what constitutes the oxide- and silicate-water interfaces. This critical review discusses how science progresses from understanding ideal solid-water interfaces to more realistic systems, focusing on accomplishments in the last 20 years and identifying challenges and future opportunities for the community to address. We anticipate that the next 20 years will focus on understanding and predicting dynamic transient and reactive structures over greater spatial and temporal ranges as well as systems of greater structural and chemical complexity. Closer collaborations of theoretical and experimental experts across disciplines will continue to be critical to achieving this great aspiration.

5.
Sci Rep ; 13(1): 5877, 2023 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-37041164

RESUMO

Mobility and bioavailability of radionuclides in the environment strongly depend on their aqueous speciation, adsorption behavior and the solubility of relevant solid phases. In the present context, we focus on naturally occurring Th-232 at a location in central Sri Lanka presenting high background radiation levels. Four different soil samples were characterized using X-ray Absorption Spectroscopy (XAS) at the Th L3-edge (16.3 keV), Scanning Electron Microscopy (SEM) and Energy Dispersive X-ray (EDX) spectroscopy. X-ray Absorption Near Edge Structure (XANES) spectra are applied as a fingerprint indication for Th existing in different chemical environments. Linear combination fitting (LCF) of the Extended X-ray Absorption Fine Structure (EXAFS) data involving reference Th-monazite (phosphate) and thorianite (oxide) compounds suggested that Th is mostly present as Th-phosphate (76 ± 2%) and Th-oxide (24 ± 2%), even though minor amounts of thorite (silicate) were also detected by SEM-EDX. Further studies on selected individual particles using micro-focus X-ray Fluorescence (µ-XRF) and micro-X-ray Absorption Spectroscopy (µ-XAS) along with SEM-EDX elemental mapping provided information about the nature of Th-bearing mineral particles regarding mixed phases. This is the first study providing quantitative and XAS based speciation information on Th-mineral phases in soil samples from Sri Lanka.

6.
Acta Biomater ; 155: 386-399, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36280031

RESUMO

Cyanobacteria respond to light stimulation, activating localised assembly of type IV pili for motility. The resulting phototactic response is highly dependent on the nature of the incoming light stimulus, and the final motility parameters depend on the surface properties. Conventionally, phototaxis studies are carried out on hydrogel surfaces, such as agarose, with surface properties that vary in time due to experimental conditions. This study considers five substrates, widely utilized in microfluidic technology, to identify the most suitable alternative for performing reliable and repeatable phototaxis assays. The surfaces are characterised via a contact angle goniometer to determine the surface energy, white light interferometry for roughness, zeta-potentials and AFM force distance curves for charge patterns, and XPS for surface composition. Cell motility assays showed 1.25 times increment on surfaces with a water contact angle of 80° compared to a reference glass surface. To prove that motility can be enhanced, polydimethylsiloxane (PDMS) surfaces were plasma treated to alter their surface wettability. The motility on the plasma-treated PDMS showed similar performance as for glass surfaces. In contrast, untreated PDMS surfaces displayed close to zero motility. We also describe the force interactions of cells with the test surfaces using DLVO (Derjaguin-Landau-Verwey-Overbeek) and XDLVO (extended DLVO) theories. The computed DLVO/XDLVO force-distance curves are compared with those obtained using atomic force microscopy. Our findings show that twitching motility on tested surfaces can be described mainly from adhesive forces and hydrophobicity/hydrophilicity surface properties. STATEMENT OF SIGNIFICANCE: The current article focuses on unravelling the potential Micro-Electro-Mechanical System (MEMS) compatible surfaces for studying phototactic twitching motility of cyanobacteria. This is the first exhaustive surface characterization study coupled with phototaxis experiments, to understand the forces contributing to twitching motility. The methods shown in this paper can be further extended to study other surfaces and also to other bacteria exhibiting twitching motility.


Assuntos
Cianobactérias , Fototaxia , Propriedades de Superfície , Molhabilidade , Interações Hidrofóbicas e Hidrofílicas
7.
J Hazard Mater ; 433: 128739, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35366449

RESUMO

Although the oxidative capacity of manganese oxides has been widely investigated, potential changes of the surface reactivity in dynamic anoxic/oxic environments have been often overlooked. In this study, we showed that the reactivity of layer structured manganese oxide (birnessite) was highly sensitive to variable redox conditions within environmentally relevant ranges of pH (4.0 - 8.0), ionic strength (0-100 mM NaCl) and Mn(II)/MnO2 molar ratio (0-0.58) using ofloxacine (OFL), a typical antibiotic, as a target contaminant. In oxic conditions, OFL removal was enhanced relative to anoxic environments under alkaline conditions. Surface-catalyzed oxidation of Mn(II) enabled the formation of more reactive Mn(III) sites for OFL oxidation. However, an increase in Mn(II)/MnO2 molar ratio suppressed MnO2 reactivity, probably because of competitive binding between Mn(II) and OFL and/or modification in MnO2 surface charge. Monovalent cations (e.g., Na+) may compensate the charge deficiency caused by the presence of Mn(III), and affect the aggregation of MnO2 particles, particularly under oxic conditions. An enhancement in the removal efficiency of OFL was then confirmed in the dynamic two-step anoxic/oxic process, which emulates oscillating redox conditions in environmental settings. These findings call for a thorough examination of the reactivity changes at environmental mineral surfaces (e.g., MnO2) in natural systems that may be subjected to alternation between anaerobic and oxygenated conditions.


Assuntos
Compostos de Manganês , Óxidos , Adsorção , Oxirredução
8.
Langmuir ; 38(11): 3380-3391, 2022 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-35271289

RESUMO

The adsorption of cetyltrimethylammonium bromide (CTA+Br-) on sapphire-c surfaces was studied at pH 10 below the surfactants' critical micelle concentration. The evolution of interfacial potentials as a function of CTAB concentration was characterized by surface and zeta potential measurements and complemented by molecular dynamic (MD) simulations as well as by second-harmonic (SHG) and vibrational sum-frequency generation (SFG) spectroscopy. The changes in interfacial potentials suggest that the negative interfacial charge due to deprotonated surface aluminols groups is neutralized and can be even overcompensated by the presence of CTA+ cations at the interface. However, SFG intensities from strongly hydrogen-bonded interfacial water molecules as well as SHG intensities decrease with both increasing CTAB concentration and the magnitude of the surface potential. They do not suggest a charge reversal at the interface, while the change in zeta potential is actually consistent with an apparent charge inversion. This can be qualitatively explained by results from MD simulation, which reveal adsorbed CTA+ cations outside a first strongly bound hydration layer of water molecules, where they can locally distort the structural order and replace some of the interfacial water molecules adjacent to the first layer. This is proposed to be the origin for the significant loss in SFG and SHG intensities with increasing CTAB concentration. Moreover, we propose that CTA+ can act as a counterion and enhance the occurrence of deprotonated surface aluminols that is consistent with the decrease in surface potential.

9.
Environ Sci Technol ; 55(18): 12403-12413, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34478280

RESUMO

Calcite is the most stable polymorph of calcium carbonate (CaCO3) under ambient conditions and is ubiquitous in natural systems. It plays a major role in controlling pH in environmental settings. Electrostatic phenomena at the calcite-water interface and the surface reactivity of calcite in general have important environmental implications. They may strongly impact nutrient and contaminant mobility in soils and other subsurface environments, they control oil recovery from limestone reservoirs, and they may impact the safety of nuclear waste disposal sites. Besides the environmental relevance, the topic is significant for industrial applications and cultural heritage preservation. In this study, the structure of the calcite(104)-water interface is investigated on the basis of a new extensive set of crystal truncation rod data. The results agree with recently reported structures and resolve previous ambiguities with respect to the coordination sphere of surface Ca ions. These structural features are introduced into an electrostatic three-plane surface complexation model, describing ion adsorption and charging at the calcite-water interface. Inner surface potential data for calcite, as measured with a calcite single-crystal electrode, are used as constraints for the model in addition to zeta potential data. Ion adsorption parameters are compared with molecular dynamics simulations. All model parameters, including protonation constants, ion-binding parameters, and Helmholtz capacitances, are within physically and chemically plausible ranges. A PhreeqC version of the model is presented, which we hope will foster application of the model in environmental studies.


Assuntos
Carbonato de Cálcio , Água , Adsorção , Íons , Simulação de Dinâmica Molecular
10.
Water Res ; 189: 116622, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33227610

RESUMO

The ubiquitous distribution of microplastics (MPs) leads to inevitable interactions with the toxic pollutants present in the environment including metal-oxide nanoparticles. This study investigates the interaction of CeO2 nanoparticles (CeNPs) with MPs generated from a disposable plastic container. Further, rough MPs (R-MPs), generated through mechanical abrasion of MPs with sand, were used to probe the impact of roughness. To understand the sorption kinetics and underlying interaction processes, batch experiments were carried out. The results distinctly indicate that CeNPs sorption occurred on MPs surfaces and was consistent with the pseudo-second order kinetics model. For pristine MPs, the sorption capacity was as high as 12.9 mg/g while for R-MPs kinetic equilibrium was achieved faster and an enhanced sorption capacity (13.4 mg/g) was identified. A rise in sorption with an increase in salinity was noted while pH and humic acid exhibited a negative correlation. The observed interactions were attributed to the aggregation profile and surface charge of CeNPs and MPs. Surprisingly, CeNPs also got loaded onto MPs in non-agitated and undisturbed conditions. The sorption process was influenced by the type of aqueous matrix and the sorption capacity at equilibrium followed the trend: distilled water> synthetic freshwater> river water. FTIR spectra, zeta potential, SEM imaging, and elemental mapping revealed electrostatic interaction as the dominant mechanism. This work contributes towards the knowledge gap on the environmental risk of MPs.


Assuntos
Nanopartículas , Poluentes Químicos da Água , Adsorção , Microplásticos , Óxidos , Plásticos , Poluentes Químicos da Água/análise
11.
Materials (Basel) ; 13(8)2020 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-32326474

RESUMO

The rheological properties of fresh cement paste are highly influenced by a large number of parameters, among which the most important factors are the applied shear stress, and the shear history, the age of the sample and the temperature. The effects of these parameters on the yield stress (designated as structural limit stress in this work), the viscosity and the structural recovery rate (i.e., the change in dynamic viscosity with time at rest) were studied. In parallel, the changes in ion composition of the carrier liquid, mineral phase content and granulometry were investigated. The results reveal that all investigated rheological parameters exhibit an approximated bi-linear trend with respect to the degree of hydration, with a period of quasi-constant properties until a degree of hydration of approximately 0.07, followed by a non-linear increase. This increase could be attributed to the formation of calcium hydroxide (CH) and calcium-silicate-hydrate (C-S-H) via calorimetry results. With regard to the effect of the shear history of the sample on the rheological properties, the structural limit stress showed a minor dependency on the shear history immediately after the end of shearing, which, however, vanished within the first minute at rest. The same is true for the structural recovery rate. The presented results give detailed insights into the influences of hydration and shear on the rheological properties-especially the thixotropy-of fresh cement pastes.

12.
J Colloid Interface Sci ; 561: 708-718, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31767395

RESUMO

HYPOTHESIS: This study investigates the adsorption of americium and its chemical analogue europium on magnetite, which is expected to form as a major long-term steel canister corrosion product under anoxic and highly saline conditions. EXPERIMENTS: The sorption of europium on magnetite (solid/liquid ratio = 0.5 g/L) was investigated batch wise in NaCl brines with ionic strength I = 1 m, 3.5 m, and 6.67 m, as a function of pHm for two europium concentrations (6 × 10-10m, 1.2 × 10-5m). Information on the chemical nature of the surface species was obtained by X-ray absorption spectroscopy (XAS) at the americium L3-edge. FINDINGS: Retention of europium by magnetite of >99.5% was found above pHm 6.4 for all ionic strengths for europium concentration of 6 × 10-10m. No ionic strength effect was observed in this pHm range. At 1.2 × 10-5m europium concentration, 95 ± 4% sorption was found above pHm 7.5 for I = 1 m and above pHm 8.0 for I = 3.5 m and 6.67 m. A small ionic strength effect was observed in this case. X-ray absorption spectroscopy (XAS) results are consistent with the batch sorption experiment outcomes, showing an insignificant effect of ionic strength on the pHm dependent sorption. Results from potentiometric titrations of the solid phase, batch sorption experiments and spectroscopy were interpreted consistently with a charge distribution multi-site (CD-MUSIC) triple layer surface complexation model assuming surface coordination of the metal ion via a tridentate binding mode.

13.
Data Brief ; 25: 104354, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31463349

RESUMO

The Data in Brief contains data on the electrokinetic mobility of PTFE and silica particles in aqueous suspensions as a function of pH and temperature. Furthermore, the concomitant conductivities and pH values are reported both for systems in the absence and presence of PTFE particles as a function of temperature and are compatible with the associated research paper "The influence of temperature on the charging of Polytetrafluoroethylene surfaces in electrolyte solutions" (Barisic et al.). The trend of the electrokinetic charging with temperature can be inferred from this for both kinds of particles. The data on the evolution of the pH and the measured conductivities are valuable input for future models that simulate the charge of inert surfaces at variable temperature.

14.
J Colloid Interface Sci ; 554: 433-443, 2019 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-31325677

RESUMO

Adsorption onto two-dimensional nanosheet materials offers new possibilities for fast and efficient removal of contaminants from waters. Here, the adsorption of As(V) to a new type of iron oxides - single sheet iron oxide (SSI) - has been studied as a function of time, loading and pH. Adsorption of As(V) onto SSI was very fast compared to other iron oxides, with 80% of total As(V) adsorbed within 10 min. Examination by extended X-ray absorption fine structure analysis showed that As(V) forms a bidentate inner-sphere surface complex with SSI. Arsenic(V) adsorption isotherms and adsorption envelopes were well described using a 1-pK Basic Stern surface complexation model involving protonated (Fe2O2AsO2H-) and unprotonated (Fe2O2AsO2-2) inner-sphere surface complexes. The surface complexation constants for As(V) binding to SSI is similar to constants found for goethite and ferrihydrite. Simulated adsorption isotherms for intermediate As(V) concentrations also demonstrate that SSI is performing equally well as goethite and ferrihydrite based on surface area normalized adsorption capacities. The binding affinities at micromolar to submicromolar As(V) solution concentrations are similar for SSI and ferrihydrite. SSI has interesting potential as a stable, high-affinity sorbent for use in applications where efficient and fast removal is required.

15.
Beilstein J Nanotechnol ; 10: 1024-1037, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31165029

RESUMO

The increased utilization of one-dimensional (1D) TiO2 and titanate nanowires (TNWs) in various applications was the motivation behind studying their stability in this work, given that stability greatly influences both the success of the application and the environmental impact. Due to their high abundance in aqueous environments and their rich technological applicability, surfactants are among the most interesting compounds used for tailoring the stability. The aim of this paper is to determine the influence of surfactant molecular structure on TNW stability/aggregation behavior in water and aqueous NaBr solution by dynamic and electrophoretic light scattering. To accomplish this, two structurally different quaternary ammonium surfactants (monomeric DTAB and the corresponding dimeric 12-2-12) at monomer and micellar concentrations were used to investigate TNW stability in water and NaBr. It was shown that TNWs are relatively stable in Milli-Q water. However, the addition of NaBr induces aggregation, especially as the TNW mass concentration increases. DTAB and 12-2-12 adsorb on TNW surfaces as a result of the superposition of favorable electrostatic and hydrophobic interactions. As expected, the interaction of TNWs with 12-2-12 was stronger than with DTAB, due to the presence of two positively charged head groups and two hydrophobic tails. As a consequence of the higher adsorption of 12-2-12, TNWs remained stable in both media, while DTAB showed an opposite behavior. In order to gain more insight into changes in the surface properties after surfactant adsorption on the TNW surface, a surface complexation model was employed. With this first attempt to quantify the contribution of the surfactant structure on the adsorption equilibrium according to the observed differences in the intrinsic log K values, it was shown that 12-2-12 interacts more strongly with TNWs than DTAB. The modelling results enable a better understanding of the interaction between TNWs and surfactants as well as the prediction of the conditions that can promote stabilization or aggregation.

16.
J Contam Hydrol ; 216: 27-37, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30146331

RESUMO

The effects of acidity and salinity on solute transport in porous media are important to a diverse range of fields from seawater intrusion to nuclear waste storage. Recent transport experiments in quartz sand show the difficulty in capturing the coupling of acidity and salinity under acidic conditions for this system. Here we study the ability of different surface complexation models to capture this coupling, through an analysis of the reactive transport equations in the limit of no diffusion. This chromatographic analysis leads to a graphical representation of the full set of solutions in the phase plane, thus allowing a comprehensive comparison of the transport behavior arising from different SCMs. The analysis shows that the predicted coupling is improved by including amphoteric behavior of the quartz surface. The inclusion of a secondary proton sorption reaction increases the magnitude of surface charge under acidic conditions strengthening the acidity-salinity coupling. This suggests that even though the overall surface is negative above the point of zero charge, positively charged sites play an important role in the reactive transport of acidity and salinity.


Assuntos
Resíduos Radioativos , Salinidade , Dióxido de Silício , Adsorção , Porosidade , Quartzo , Água do Mar
17.
J Colloid Interface Sci ; 529: 294-305, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29913368

RESUMO

We present a measurement cell that allows simultaneous measurement of second harmonic generation (SHG) and streaming potential (SP) at mineral-water interfaces with flat specimen that are suitable for non-linear optical (NLO) studies. The set-up directly yields SHG data for the interface of interest and can also be used to obtain information concerning the influence of flow on NLO signals from that interface. The streaming potential is at present measured against a reference substrate (PTFE). The properties of this inert reference can be independently determined for the same conditions. With the new cell, for the first time the SHG signal and the SP for flat surfaces have been simultaneously measured on the same surface. This can in turn be used to unambiguously relate the two observations for identical solution composition. The SHG test of the cell with a fluorite sample confirmed previously observed differences in NLO signal under flow vs. no flow conditions in sum frequency generation (SFG) investigations. As a second test surface, an inert ("hydrophobic") OTS covered sapphire-c electrolyte interface was studied to verify the zeta-potential measurements with the new cell. For this system we obtained combined zeta-potential/SHG data in the vicinity of the point of zero charge, which were found to be proportional to each other as expected. Furthermore, on the accessible time scales of the SHG measurements no effects of flow, flow velocity and stopped flow occurred on the interfacial water structure. This insensitivity to flow for the inert surface was corroborated by concomitant molecular dynamics simulations. Finally, the set-up was used for simultaneous measurements of the two properties as a function of pH in automated titrations with an oxidic surface. Different polarization combinations obtained in two separate titrations, yielded clearly different SHG data, while under identical conditions zeta-potentials were exactly reproduced. The polarization combination that is characteristic for dipoles perpendicular to the surface scaled with the zeta-potentials over the pH-range studied, while the other did not. The work provides an advanced approach for investigating liquid/surface interactions which play a major role in our environment. The set-up can be upgraded for SFG studies, which will allow more detailed studies on the chemistry and the water structure at a given interface, but also the combined study of specific adsorption including kinetics in combination with electrokinetics. Such investigations are crucial for the basic understanding of many environmental processes from aquatic to atmospheric systems.

18.
J Chem Phys ; 148(22): 222836, 2018 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-29907055

RESUMO

Although they have been widely used as models for oxide surfaces, the deprotonation behaviors of the Keggin-ions (MeAl127+) and typical oxide surfaces are very different. On Keggin-ions, the deprotonation occurs over a very narrow pH range at odds with the broad charging curve of larger oxide surfaces. Depending on the Me concentration, the deprotonation curve levels off sooner (high Me concentration) or later (for low Me concentration). The leveling off shows the onset of aggregation before which the Keggin-ions are present as individual units. We show that the atypical titration data previously observed for some GaAl12 solutions in comparison to the originally reported data can be explained by the presence of Ga2Al11 ions. The pKa value of aquo-groups bound to octahedral Ga was determined from ab initio molecular dynamics simulations relative to the pure GaAl12 ions. Using these results within a surface complexation model, the onset of deprotonation of the crude solution is surprisingly well predicted and the ratio between the different species is estimated to be in the proportion 20 (Ga2Al11) : 20 (Al13) : 60 (GaAl12).

19.
Environ Sci Technol ; 52(2): 581-588, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29231722

RESUMO

The sorption processes of Se(IV) onto γ-Al2O3 were studied by in situ Infrared spectroscopy, batch sorption studies, zeta potential measurements and surface complexation modeling (SCM) in the pH range from 5 to 10. In situ attenuated total reflection fourier-transform infrared (ATR FT-IR) spectroscopy revealed the predominant formation of a single inner-sphere surface species at the alumina surface, supporting previously reported EXAFS results, irrespective of the presence or absence of atmospherically derived carbonate. The adsorption of Se(IV) decreased with increasing pH, and no impact of the ionic strength was observed in the range from 0.01 to 0.1 mol L-1 NaCl. Inner-sphere surface complexation was also suggested from the shift of the isoelectric point of γ-Al2O3 observed during zeta potential measurements when Se(IV) concentration was 10-4 mol L-1. Based on these qualitative findings, the acid-base surface properties of γ-Al2O3 and the Se(IV) adsorption edges were successfully described using a 1-pK CD-MUSIC model, considering one bidentate surface complex based on previous EXAFS results. The results of competitive sorption experiments suggested that the surface affinity of Se(IV) toward γ-Al2O3 is higher than that of dissolved inorganic carbon (DIC). Nevertheless, from the in situ experiments, we suggest that the presence of DIC might transiently impact the migration of Se(IV) by reducing the number of available sorption sites on mineral surfaces. Consequently, this should be taken into account in predicting the environmental fate of Se(IV).


Assuntos
Selênio , Adsorção , Óxido de Alumínio , Concentração de Íons de Hidrogênio , Espectroscopia de Infravermelho com Transformada de Fourier , Termodinâmica
20.
Environ Sci Technol ; 51(7): 3751-3758, 2017 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-28285518

RESUMO

Knowledge of the geochemical behavior of selenium and strontium is critical for the safe disposal of radioactive wastes. Goethite, as one of the most thermodynamically stable and commonly occurring natural iron oxy-hydroxides, promisingly retains these elements. This work comprehensively studies the adsorption of Se(IV) and Sr(II) on goethite. Starting from electrokinetic measurements, the binary and ternary adsorption systems are investigated and systematically compared via batch experiments, EXAFS analysis, and CD-MUSIC modeling. Se(IV) forms bidentate inner-sphere surface complexes, while Sr(II) is assumed to form outer-sphere complexes at low and intermediate pH and inner-sphere complexes at high pH. Instead of a direct interaction between Se(IV) and Sr(II), our results indicate an electrostatically driven mutual enhancement of adsorption. Adsorption of Sr(II) is promoted by an average factor of 5 within the typical groundwater pH range from 6 to 8 for the concentration range studied here. However, the interaction between Se(IV) and Sr(II) at the surface is two-sided, Se(IV) promotes Sr(II) outer-sphere adsorption, but competes for inner-sphere adsorption sites at high pH. The complexity of surfaces is highlighted by the inability of adsorption models to predict isoelectric points without additional constraints.


Assuntos
Selênio/química , Estrôncio , Adsorção , Concentração de Íons de Hidrogênio , Minerais/química , Compostos de Selênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...