Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
In Vivo ; 36(3): 1222-1235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35478120

RESUMO

BACKGROUND/AIM: The skin plays an important role in protecting the body from mechanical damage, microbial infection, ultraviolet radiation, and extreme temperatures. Many products as well as ongoing studies have focused on skin injury and repair; however, unlimited challenges are still being faced. Furthermore, the drugs that are currently on the market are not adequate to meet the increasing medical needs. This study aimed to discover whether our new product can efficiently promote wound repair and skin restoration. MATERIALS AND METHODS: in this study, we applied a new AIMP1-derived peptide (AdP), NeoPep S, administered in two dose types (1 ppm and 3 ppm), and determined their effect on skin wound repair in rat models. Cell proliferation and inflammatory responses were assessed using immunofluorescence (IF) staining and ELISA assay. RESULTS: As expected, our results showed more rapid and satisfactory progress in wound closure upon treatment with NeoPep S 3 ppm than with NeoPep S 1 ppm. The 3 ppm peptide derived from AIMP1 protein, harmoniously interacted with the wound to promote re-epithelialization and collagen regeneration, as well as the down-regulation of several types of cytokines and chemokines, such as TNF-α, IL-6, IL-8, IL-lß, MCP-1, and F4/80. Moreover, it was demonstrated to promote fibroblast proliferation, migration, and differentiation by TGF-ßl and TGF-ß3 modulation, as well as nitrite and reactive oxygen species scavenging. CONCLUSION: The novel peptide NeoPep S 3 ppm showed high effectiveness and safety in wound healing.


Assuntos
Raios Ultravioleta , Cicatrização , Animais , Proliferação de Células , Peptídeos/metabolismo , Peptídeos/farmacologia , Ratos , Pele , Cicatrização/fisiologia
2.
Polymers (Basel) ; 14(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35267741

RESUMO

Hydrocolloid dressings are an important method for accelerating wound healing. A combination of a hydrocolloid and nanoparticles (NPs), such as gold (Au), improves the wound healing rate, but Au-NPs are expensive and unable to block ultraviolet (UV) light. Herein, we combined zinc oxide nanoparticles (ZnO-NPs) with hydrocolloids for a less expensive and more effective UV-blocking treatment of wounds. Using Sprague-Dawley rat models, we showed that, during 10-day treatment, a hydrocolloid patch covered with ZnO-NPs (ZnO-NPs-HC) macroscopically and microscopically stimulated the wound healing rate and improved wound healing in the inflammation phase as shown by reducing of pro-inflammatory cytokines (CD68, IL-8, TNF-α, MCP-1, IL-6, IL-1ß, and M1) up to 50%. The results from the in vitro models (RAW264.7 cells) also supported these in vivo results: ZnO-NPs-HCs improved wound healing in the inflammation phase by expressing a similar level of pro-inflammatory mediators (TNF-α and IL-6) as the negative control group. ZnO-NPs-HCs also encouraged the proliferation phase of the healing process, which was displayed by increasing expression of fibroblast biomarkers (α-SMA, TGF-ß3, vimentin, collagen, and M2) up to 60%. This study provides a comprehensive analysis of wound healing by measuring the biomarkers in each phase and suggests a cheaper method for wound dressing.

3.
New Phytol ; 206(1): 243-254, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25442012

RESUMO

In monocotyledons, the root system is mostly composed of postembryonic shoot-borne roots called crown roots. In rice (Oryza sativa), auxin promotes crown root initiation via the LOB-domain transcription factor (LBD) transcription factor CROWN ROOTLESS1 (CRL1); however, the gene regulatory network downstream of CRL1 remains largely unknown. We tested CRL1 transcriptional activity in yeast and in planta, identified CRL1-regulated genes using an inducible gene expression system and a transcriptome analysis, and used in situ hybridization to demonstrate coexpression of a sample of CRL1-regulated genes with CRL1 in crown root primordia. We show that CRL1 positively regulates 277 genes, including key genes involved in meristem patterning (such as QUIESCENT-CENTER SPECIFIC HOMEOBOX; QHB), cell proliferation and hormone homeostasis. Many genes are homologous to Arabidopsis genes involved in lateral root formation, but about a quarter are rice-specific. Our study reveals that several genes acting downstream of LBD transcription factors controlling postembryonic root formation are conserved between monocots and dicots. It also provides evidence that specific genes are involved in the formation of shoot-derived roots in rice.


Assuntos
Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Meristema/genética , Meristema/crescimento & desenvolvimento , Oryza/crescimento & desenvolvimento , Proteínas de Plantas/metabolismo , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...