RESUMO
The interfacial barrier of charge transfer from semiconductors to cocatalysts means that the photogenerated charges cannot be fully utilized, especially for the challenging water oxidation reaction. Using cobalt cubane molecules (Co4 O4 ) as water oxidation cocatalysts, we rationally assembled partially oxidized graphene (pGO), acting as a charge-transfer mediator, on the hole-accumulating {-101} facets of lead chromate (PbCrO4 ) crystal. The assembled pGO enables preferable immobilization of Co4 O4 molecules on the {-101} facets of the PbCrO4 crystal, which is favorable for the photogenerated holes transferring from PbCrO4 to Co4 O4 molecules. The surface charge-transfer efficiency of PbCrO4 was boosted by selective assembly of pGO between PbCrO4 and Co4 O4 molecules. An apparent quantum efficiency for photocatalytic water oxidation on the Co4 O4 /pGO/PbCrO4 photocatalyst exceeded 10 % at 500â nm. This strategy of rationally assembling charge-transfer mediator provides a feasible method for acceleration of charge transfer and utilization in semiconductor photocatalysis.
RESUMO
The aims of the present study were to evaluate the expression of prolyl 4-hydroxylase subunit alpha 3 (P4HA3) in adipocytes and adipose tissue and to explore its effect on obesity and type 2 diabetes mellitus (T2DM). We initially demonstrated that P4HA3 was significantly upregulated in the subcutaneous adipose tissue of obesity and T2DM patients, and its functional roles in adipocyte differentiation and insulin resistance were investigated using in vitro and in vivo models. The knockdown of P4HA3 inhibited adipocyte differentiation and improved insulin resistance in 3T3-L1 cells. In C57BL/6J db/db mice fed with a high fat diet (HFD), silencing P4HA3 significantly decreased fasting blood glucose and triglycerides (TG) levels, with concomitant decrease of body weight and adipose tissue weight. Further analysis showed that P4HA3 knockdown was correlated with the augmented IRS-1/PI3K/Akt/FoxO1 signaling pathway in the adipose and hepatic tissues of obese mice, which could improve hepatic glucose homeostasis and steatosis of mice. Together, our study suggested that the dysregulation of P4HA3 may contribute to the development of obesity and T2DM.
Assuntos
Diabetes Mellitus Tipo 2 , Resistência à Insulina , Pró-Colágeno-Prolina Dioxigenase , Animais , Camundongos , Dieta Hiperlipídica , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Fosfatidilinositol 3-Quinases , Pró-Colágeno-Prolina Dioxigenase/metabolismoRESUMO
The aims of the present study were to evaluate the expression of prolyl 4-hydroxylase subunit alpha 3 (P4HA3) in adipocytes and adipose tissue and to explore its effect on obesity and type 2 diabetes mellitus (T2DM). We initially demonstrated that P4HA3 was significantly upregulated in the subcutaneous adipose tissue of obesity and T2DM patients, and its functional roles in adipocyte differentiation and insulin resistance were investigated using in vitro and in vivo models. The knockdown of P4HA3 inhibited adipocyte differentiation and improved insulin resistance in 3T3-L1 cells. In C57BL/6J db/db mice fed with a high fat diet (HFD), silencing P4HA3 significantly decreased fasting blood glucose and triglycerides (TG) levels, with concomitant decrease of body weight and adipose tissue weight. Further analysis showed that P4HA3 knockdown was correlated with the augmented IRS-1/PI3K/Akt/FoxO1 signaling pathway in the adipose and hepatic tissues of obese mice, which could improve hepatic glucose homeostasis and steatosis of mice. Together, our study suggested that the dysregulation of P4HA3 may contribute to the development of obesity and T2DM.
RESUMO
Thrips hawaiiensis (Morgan) is a flower-inhabiting thrips with a wide range of host plants, but little is known regarding its biological and ecological characteristics on vegetable hosts. Here, we evaluated the development, survival, and oviposition of T. hawaiiensis on five vegetable species (Capsicum annuum, Solanum melongena, Cucurbita moschata, Lablab purpureus, and Brassica oleracea), and constructed its life tables on these vegetables. There were significant differences in the development of T. hawaiiensis on the five vegetables, and the developmental times from egg to adult were 12.19 days, 11.59 days, 11.12 days, 10.78 days, and 10.51 days on C. moschata, B. oleracea, L. purpureus, C. annuum, and S. melongena, respectively. There were also significant differences in T. hawaiiensis' survival rate on these plants, with S. melongena (71.00%) > C. annuum (67.33%) > L. purpureus (63.33%) > B. oleracea (57.00%) > C. moschata (49.33%). The greatest and lowest fecundity levels of T. hawaiiensis were found on S. melongena (44.28) and C. moschata (30.16), respectively. T. hawaiiensis had the greatest net reproductive rate on S. melongena (19.22), followed by C. annuum (16.11), L. purpureus (15.17), B. oleracea (11.10), and C. moschata (8.47), and the intrinsic rate of increase showed a similar trend, with values of 0.140, 0.125, 0.121, 0.112, and 0.093, respectively. Thus, S. melongena and C. moschata were the most and least suitable hosts for the population development of T. hawaiiensis among the five tested vegetable hosts. This study could provide important information for the key control of T. hawaiiensis on different crops.
Assuntos
Tisanópteros , Animais , Produtos Agrícolas , Tábuas de Vida , Oviposição , VerdurasRESUMO
Bone marrow mesenchymal stem cells (BMSCs) transplantation has attracted attention for the treatment of liver cirrhosis and end-stage liver diseases. Therefore, in this study, we evaluated the effect of different methods of BMSCs transplantation in the treatment of liver cirrhosis in rats. Seventy-two male Sprague-Dawley rats were divided into 7 groups: 10 were used to extract BMSCs, 10 were used as normal group, and the remaining 52 rats were randomly divided into five groups for testing: control group, BMSCs group, BMSCs+granulocyte colony-stimulating factor (G-CSF) group, and BMSCs+Jisheng Shenqi decoction (JSSQ) group. After the end of the intervention course, liver tissue sections of rats were subjected to hematoxylin and eosin (H&E) and Masson staining, and pathological grades were scored. Liver function [aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB)] and hepatic fibrosis markers [hyaluronidase (HA), laminin (LN), type III procollagen (PCIII), type IV collagen (CIV)] were measured. BMSCs+JSSQ group had the best effect of reducing ALT and increasing ALB after intervention therapy (P<0.05). The reducing pathological scores and LN, PCIII, CIV of BMSCs+G-CSF group and BMSCs+JSSQ group after intervention therapy were significant, but there was no significant difference between the two groups (P>0.05). The effect of JSSQ on improving stem cell transplantation in rats with liver cirrhosis was confirmed. JSSQ combined with BMSCs could significantly improve liver function and liver pathology scores of rats with liver cirrhosis.
Assuntos
Cirrose Hepática Experimental/cirurgia , Transplante de Células-Tronco Mesenquimais/métodos , Alanina Transaminase/sangue , Animais , Aspartato Aminotransferases/sangue , Cirrose Hepática Experimental/patologia , Masculino , Ratos , Ratos Sprague-DawleyRESUMO
Bone marrow mesenchymal stem cells (BMSCs) transplantation has attracted attention for the treatment of liver cirrhosis and end-stage liver diseases. Therefore, in this study, we evaluated the effect of different methods of BMSCs transplantation in the treatment of liver cirrhosis in rats. Seventy-two male Sprague-Dawley rats were divided into 7 groups: 10 were used to extract BMSCs, 10 were used as normal group, and the remaining 52 rats were randomly divided into five groups for testing: control group, BMSCs group, BMSCs+granulocyte colony-stimulating factor (G-CSF) group, and BMSCs+Jisheng Shenqi decoction (JSSQ) group. After the end of the intervention course, liver tissue sections of rats were subjected to hematoxylin and eosin (H&E) and Masson staining, and pathological grades were scored. Liver function [aminotransferase (ALT), aspartate aminotransferase (AST), albumin (ALB)] and hepatic fibrosis markers [hyaluronidase (HA), laminin (LN), type III procollagen (PCIII), type IV collagen (CIV)] were measured. BMSCs+JSSQ group had the best effect of reducing ALT and increasing ALB after intervention therapy (P<0.05). The reducing pathological scores and LN, PCIII, CIV of BMSCs+G-CSF group and BMSCs+JSSQ group after intervention therapy were significant, but there was no significant difference between the two groups (P>0.05). The effect of JSSQ on improving stem cell transplantation in rats with liver cirrhosis was confirmed. JSSQ combined with BMSCs could significantly improve liver function and liver pathology scores of rats with liver cirrhosis.
Assuntos
Animais , Masculino , Ratos , Transplante de Células-Tronco Mesenquimais/métodos , Cirrose Hepática Experimental/cirurgia , Aspartato Aminotransferases/sangue , Ratos Sprague-Dawley , Alanina Transaminase/sangue , Cirrose Hepática Experimental/patologiaRESUMO
OBJECTIVE: Angiotensin II, one component of renin-angiotensin system (RAS), is formed from Ang I by the catalysing of angiotensin converting enzyme (ACE). Angiotensin II plays an important role in the development of insulin resistance. ACE2, a homologue of ACE, couterregulate the actions of angiotensin II by facilitating its breakdown to angiotensin-(1-7). RAS has been implicated in the pathogenesis of non-alcoholic steatohepatitis (NASH). Earlier demonstration that thiazolidinediones (TZDs) improve steatohepatitis promoted us to evaluate the change of hepatic ACE2 expression in rats with high fat diet (HFD)-induced NASH and the effects of TZDs on the hepatic ACE2 expression. MATERIAL AND METHODS: Rats were divided into normal control group, high fat diet (HFD) group, and pioglitazone group. After 24 weeks of treatment with pioglitazone, a TZD, we evaluated changes in liver histology, insulin sensitivity, lipid metabolism, circulating RAS levels and hepatic ACE2 expression. RESULTS: Compared with normal controls, the concentrations of serum lipid, aminotransaminase, glucose, insulin, ACE, angiotensin II, ACE2, angiotensin-(1-7) and the degree of hepatic ACE2 expression were significantly higher in rats with HFD-induced NASH. Pioglitazone significantly reduced the concentrations of serum lipid, aminotransaminase, glucose, insulin, ACE, angiotensin II while markedly raised the concentrations of serum ACE2, angiotensin-(1-7) and the degree of hepatic ACE2 expression. CONCLUSION: Hepatic ACE2 expression markedly increased in rats with HFD-induced NASH and was further upregulated by pioglitazone. Hepatic ACE2 may be a new target of pioglitazone treatment for NASH.