Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.444
Filtrar
1.
Ecotoxicol Environ Saf ; 280: 116524, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38838464

RESUMO

BACKGROUND: Organophosphate esters (OPEs) and Per- and polyfluoroalkyl substances (PFAS) are ubiquitous environmental contaminants with common exposure sources, leading to their widespread presence in human body. However, evidence on co-exposure to OPEs and PFAS and its impact on cardiovascular-kidney-liver-metabolic biomarkers remains limited. METHODS: In this cross-sectional study, 467 adults were enrolled from January to May 2022 during physical visits in Shijiazhuang, Hebei province. Eleven types of OPEs and twelves types of PFAS were detected, among which eight OPEs and six PFAS contaminants were detected in more than 60% of plasma samples. Seventeen biomarkers were assessed to comprehensively evaluate the cardiovascular-kidney-liver-metabolic function. Multiple linear regression, multipollutant models with sparse partial least squares, and Bayesian kernel machine regression (BKMR) models were applied to examine the associations of individual OPEs and PFAS and their mixtures with organ function and metabolism, respectively. RESULTS: Of the over 400 exposure-outcome associations tested when modelling, we observed robust results across three models that perfluorohexanoic acid (PFHxS) was significantly positively associated with alanine aminotransferase (ALT), aspartate aminotransferase (AST), total bilirubin (TBIL), and indirect bilirubin (IBIL). Perfluorononanoic acid was significantly associated with decreased AST/ALT and increased very-low-density lipoprotein cholesterol levels. Besides, perfluorodecanoic acid was correlated with increased high lipoprotein cholesterol and perfluoroundecanoic acid was consistently associated with lower glucose level. BKMR analysis showed that OPEs and PFAS mixtures were positively associated with IBIL and TBIL, among which PFHxS was the main toxic chemicals. CONCLUSIONS: Our findings suggest that exposure to OPEs and PFAS, especially PFHxS and PFNA, may disrupt organ function and metabolism in the general population, providing insight into the potential pathophysiological mechanisms of OPEs and PFAS co-exposure and chronic diseases.

2.
Front Med (Lausanne) ; 11: 1370657, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741765

RESUMO

Introduction: Multiple targets are considered as the causes of ambient fine particulate matter [aerodynamic diameters of < 2.5 µm (PM2.5)] induced lung function injury. Qiju granules are derived from the traditional Chinese medicine (TCM) formula known as Qi-Ju-Di-Huang-Wan (Lycium, Chrysanthemum, and Rehmannia Formula, QJDHW), which has been traditionally used to treat symptoms such as cough with phlegm, dry mouth and throat, and liver heat. This treatment approach involves attenuating inflammation, oxidative stress, and fibrosis response. This study investigated the effects of Qiju granules on protecting lung function against PM2.5 exposure in a clinical trial. Methods: A randomized, double-blinded, and placebo-controlled trial was performed among 47 healthy college students in Hangzhou, Zhejiang Province in China. The participants were randomly assigned to the Qiju granules group or the control group based on gender. Clinical follow-ups were conducted once every 2 weeks during a total of 4 weeks of intervention. Real-time monitoring of PM2.5 concentrations in the individually exposed participants was carried out. Data on individual characteristics, heart rate (HR), blood pressure (BP), and lung function at baseline and during the follow-ups were collected. The effects of PM2.5 exposure on lung function were assessed within each group using linear mixed-effect models. Results: In total, 40 eligible participants completed the scheduled follow-ups. The average PM2.5 level was found to be 64.72 µg/m3 during the study period. A significant negative correlation of lung function with PM2.5 exposure concentrations was observed, and a 1-week lag effect was observed. Forced expiratory volume in one second (FEV1), peak expiratory flow (PEF), maximal mid-expiratory flow (MMEF), forced expiratory flow at 75% of forced vital capacity (FVC) (FEF75), forced expiratory flow at 50% of FVC (FEF50), and forced expiratory flow at 25% of FVC (FEF25) were significantly decreased due to PM2.5 exposure in the control group. Small airway function was impaired more seriously than large airway function when PM2.5 exposure concentrations were increased. In the Qiju granules group, the associations between lung function and PM2.5 exposure were much weaker, and no statistical significance was observed. Conclusion: The results of the study showed that PM2.5 exposure was associated with reduced lung function. Qiju granules could potentially be effective in protecting lung functions from the adverse effects of PM2.5 exposure. Clinical Trial Registration: identifier: ChiCTR1900021235.

3.
Patient ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38702574

RESUMO

BACKGROUND AND OBJECTIVES: Increasing longevity and advances in treatment have increased the cancer burden in the elderly, resulting in complex follow-up care needs; however, in China, little is known about the follow-up care preferences of these patients. This study quantified older cancer patients' preferences for follow-up care and examined the trade-offs they are willing to make to accept an alternative follow-up model. METHODS: A discrete choice experiment was conducted among inpatients aged over 60 years with breast, prostate, or colorectal cancer, at two large tertiary hospitals in Nantong, China. Preference weights for follow-up care were estimated using mixed logit analysis. Subgroup analysis and latent class analysis were used to explore preference heterogeneity. RESULTS: Complete results were obtained from 422 patients (144 with breast cancer, 133 with prostate cancer, 145 with colorectal cancer), with a mean age of 70.81 years. Older cancer patients stated a preference for follow-up by specialists over primary healthcare (PHC) providers ( ß = -1.18, 95% confidence interval -1.40 to -0.97). The provider of follow-up care services was the most valued attribute among patients with breast cancer (relative importance [RI] 37.17%), while remote contact services were prioritized by patients with prostate (RI 43.50%) and colorectal cancer (RI 33.01%). The uptake rate of an alternative care model integrating PHC increased compared with the baseline setting when patients were provided with preferred services (continuity of care, individualized care plans, and remote contact services). CONCLUSION: To encourage older cancer patients to use PHC-integrated follow-up care, alternative follow-up care models need to be based on patients' preferences before introducing them as a routine option.

4.
Brain Res Bull ; 213: 110988, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38805766

RESUMO

SOCS (Suppressor of Cytokine Signalling) proteins are intracellular negative regulators that primarily modulate and inhibit cytokine-mediated signal transduction, playing a crucial role in immune homeostasis and related inflammatory diseases. SOCS act as inhibitors by regulating the Janus kinase-signal transducer and activator of transcription (JAK-STAT) signaling pathway, thereby intervening in the pathogenesis of inflammation and autoimmune diseases. Recent studies have also demonstrated their involvement in central immunity and neuroinflammation, showing a dual functionality. However, the specific mechanisms of SOCS in the central nervous system remain unclear. This review thoroughly elucidates the specific mechanisms linking the SOCS-JAK-STAT pathway with the inflammatory manifestations of neurodegenerative diseases. Based on this, it proposes the theory that SOCS proteins can regulate the JAK-STAT pathway and inhibit the occurrence of neuroinflammation. Additionally, this review explores in detail the current therapeutic landscape and potential of targeting SOCS in the brain via the JAK-STAT pathway for neuroinflammation, offering insights into potential targets for the treatment of neurodegenerative diseases.

5.
Ecotoxicol Environ Saf ; 278: 116423, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38705039

RESUMO

Airborne fine particulate matter (PM2.5) exposure is closely associated with metabolic disturbance, in which brown adipose tissue (BAT) is one of the main contributing organs. However, knowledge of the phenotype and mechanism of PM2.5 exposure-impaired BAT is quite limited. In the study, male C57BL/6 mice at three different life phases (young, adult, and middle-aged) were simultaneously exposed to concentrated ambient PM2.5 or filtered air for 8 weeks using a whole-body inhalational exposure system. H&E staining and high-resolution respirometry were used to assess the size of adipocytes and mitochondrial function. Transcriptomics was performed to determine the differentially expressed genes in BAT. Quantitative RT-PCR, immunohistochemistry staining, and immunoblots were performed to verify the transcriptomics and explore the mechanism for BAT mitochondrial dysfunction. Firstly, PM2.5 exposure caused altered BAT morphology and mitochondrial dysfunction in middle-aged but not young or adult mice. Furthermore, PM2.5 exposure increased cellular senescence in BAT of middle-aged mice, accompanied by cell cycle arrest, impaired DNA replication, and inhibited AKT signaling pathway. Moreover, PM2.5 exposure disrupted apoptosis and autophagy homeostasis in BAT of middle-aged mice. Therefore, BAT in middle-aged mice was more vulnerable to PM2.5 exposure, and the cellular senescence-initiated apoptosis, autophagy, and mitochondrial dysfunction may be the mechanism of PM2.5 exposure-induced BAT impairment.


Assuntos
Tecido Adiposo Marrom , Poluentes Atmosféricos , Senescência Celular , Camundongos Endogâmicos C57BL , Mitocôndrias , Material Particulado , Animais , Material Particulado/toxicidade , Tecido Adiposo Marrom/efeitos dos fármacos , Masculino , Camundongos , Senescência Celular/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Mitocôndrias/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos
7.
Eur J Protistol ; 94: 126087, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38761673

RESUMO

Ciliates of the class Plagiopylea play a vital role in various anaerobic environments as consumers of prokaryotes. Yet, the diversity and phylogeny of this group of ciliates, especially marine representatives, remain poorly known. In this study, three Parasonderia species, viz., Parasonderia elongata spec. nov., and the already known P. cyclostoma and P. vestita, discovered in anaerobic sediments from various intertidal zones in China, were investigated based on their living morphology, infraciliature, and small subunit ribosomal rRNA gene sequences. Parasonderia elongata can be recognized by its larger body size, elongated body shape, oval oral opening, number of oral kineties, and significantly shortened leftmost postbuccal polykineties on the cell surface. Improved diagnosis and redescription of P. cyclostoma is provided for the first time, including data on infraciliature and molecular sequence. Phylogenetic analyses revealed that the three species cluster together and with the sequence of a Chinese population of P. vestita already present in the GenBank database, forming a robust clade.

8.
J Urban Health ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38740710

RESUMO

Knowledge about neighborhood characteristics that predict disease burden can be used to guide equity-based public health interventions or targeted social services. We used a case-control design to examine the association between area-level social vulnerability and severe COVID-19 using electronic health records (EHR) from a regional health information hub in the greater Philadelphia region. Severe COVID-19 cases (n = 15,464 unique patients) were defined as those with an inpatient admission and a diagnosis of COVID-19 in 2020. Controls (n = 78,600; 5:1 control-case ratio) were a random sample of individuals who did not have a COVID-19 diagnosis from the same geographic area. Retrospective data on comorbidities and demographic variables were extracted from EHR and linked to area-level social vulnerability index (SVI) data using ZIP codes. Models adjusted for different sets of covariates showed incidence rate ratios (IRR) ranging from 1.15 (95% CI, 1.13-1.17) in the model adjusted for individual-level age, sex, and marital status to 1.09 (95% CI, 1.08-1.11) in the fully adjusted model, which included individual-level comorbidities and race/ethnicity. The fully adjusted model indicates that a 10% higher area-level SVI was associated with a 9% higher risk of severe COVID-19. Individuals in neighborhoods with high social vulnerability were more likely to have severe COVID-19 after accounting for comorbidities and demographic characteristics. Our findings support initiatives incorporating neighborhood-level social determinants of health when planning interventions and allocating resources to mitigate epidemic respiratory diseases, including other coronavirus or influenza viruses.

9.
BMC Plant Biol ; 24(1): 457, 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38797823

RESUMO

BACKGROUND: Cotton is globally important crop. Verticillium wilt (VW), caused by Verticillium dahliae, is the most destructive disease in cotton, reducing yield and fiber quality by over 50% of cotton acreage. Breeding resistant cotton cultivars has proven to be an efficient strategy for improving the resistance of cotton to V. dahliae. However, the lack of understanding of the genetic basis of VW resistance may hinder the progress in deploying elite cultivars with proven resistance. RESULTS: We planted the VW-resistant Gossypium hirsutum cultivar Zhongzhimian No.2 (ZZM2) in an artificial greenhouse and disease nursery. ZZM2 cotton was subsequently subjected to transcriptome sequencing after Vd991 inoculation (6, 12, 24, 48, and 72 h post-inoculation). Several differentially expressed genes (DEGs) were identified in response to V. dahliae infection, mainly involved in resistance processes, such as flavonoid and terpenoid quinone biosynthesis, plant hormone signaling, MAPK signaling, phenylpropanoid biosynthesis, and pyruvate metabolism. Compared to the susceptible cultivar Junmian No.1 (J1), oxidoreductase activity and reactive oxygen species (ROS) production were significantly increased in ZZM2. Furthermore, gene silencing of cytochrome c oxidase subunit 1 (COX1), which is involved in the oxidation-reduction process in ZZM2, compromised its resistance to V. dahliae, suggesting that COX1 contributes to VW resistance in ZZM2. CONCLUSIONS: Our data demonstrate that the G. hirsutum cultivar ZZM2 responds to V. dahliae inoculation through resistance-related processes, especially the oxidation-reduction process. This enhances our understanding of the mechanisms regulating the ZZM2 defense against VW.


Assuntos
Resistência à Doença , Perfilação da Expressão Gênica , Redes Reguladoras de Genes , Gossypium , Doenças das Plantas , Gossypium/genética , Gossypium/microbiologia , Gossypium/imunologia , Doenças das Plantas/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Resistência à Doença/genética , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Transcriptoma , Verticillium
10.
Am J Ophthalmol ; 265: 200-212, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38719132

RESUMO

PURPOSE: To investigate the repeatability and agreement of corneal astigmatism measurements in eyes with irregular corneal astigmatism component (ICAC) using four devices: IOLMaster 700 biometer, Lenstar 900 biometer, iTrace, and Pentacam. DESIGN: Prospective cross-sectional reliability analysis. METHODS: Sixty-four eyes (52 patients) with ICAC were examined three times using the four devices. The eye with ICAC in this study is defined as the cornea has a certain degree of irregular astigmatism (asymmetric and/or skewed bowtie pattern of corneal topography according to corneal topography classification), accompanied with total corneal higher-order aberrations in the 4 mm zone of 0.3 µm or greater. Corneal astigmatism was evaluated using three categories: anterior corneal astigmatism (ACA), posterior corneal astigmatism, and total corneal astigmatism (TCA). The repeatability was determined using the ∆Ast (arithmetic mean of vector differences among three repeated corneal astigmatism measurements). Bland-Altman plots and astigmatism vector analyses were employed to assess agreement. RESULTS: The IOLMaster 700 (∆Ast = 0.27 ± 0.20 D) showcased higher repeatability in ACA measurements compared to iTrace (∆Ast = 0.37 ± 0.38 D, P = .040) and Pentacam (∆Ast = 0.50 ± 0.22 D, P < .001), and paralleled the performance of Lenstar 900 (∆Ast = 0.31 ± 0.26 D, P = .338). The Pentacam (∆Ast = 0.09 ± 0.07 D, P < .001) demonstrated superior repeatability in posterior corneal astigmatism, whereas the IOLMaster 700 (∆Ast = 0.33 ± 0.23 D, P < .001) excelled in TCA. The IOLMaster 700 exhibited good agreement with either Lenstar 900 or iTrace, characterized by narrow 95% limits of agreement and clinically acceptable vector differences. Conversely, vector differences between Pentacam and the other three devices in ACA and TCA measurements were clinically significant, exceeding 0.50 D (all P < .05). CONCLUSIONS: In terms of repeatability of corneal astigmatism measurements in eyes with ICAC, the IOLMaster 700 and Lenstar 900 outperformed iTrace and Pentacam. While the IOLMaster 700 can be used interchangeably with either Lenstar 900 or iTrace, the Pentacam is not interchangeable with the other three devices.

11.
Environ Sci Pollut Res Int ; 31(23): 34324-34339, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38700768

RESUMO

The combination of aerated flows and a high-pressure environment in a stilling basin can result in the supersaturation of total dissolved gas (TDG) downstream of hydraulic projects, posing an ecological risk to aquatic populations by inducing gas bubble disease (GBD) or other negative effects. There is limited literature reporting TDG mass transfer experiments on a complete physical dam model; most existing research is based on measurements in prototype tailwaters. In this study, TDG mass transfer experiments were conducted on a physical model of an under-constructed dam, with TDG-supersaturated water as the inflow, and TDG concentrations were meticulously monitored within the stilling basin. The measurements indicate that the TDG saturation at the outlet of the stilling basin decreased by 13.7% and 10.6% compared to the inlet for the two cases, respectively. Subsequently, an improved TDG prediction model was developed by incorporating a sub-grid air entrainment model and a phase-constrained scalar model. The numerical simulation results were compared with experimental data, indicating a maximum error in TDG saturation at all measured points of less than ± 3%. Moreover, the TDG saturation showed an error of only ± 0.3% at the outlet of the stilling basin. This model has broad applicability to various flow types for obtaining TDG mass transfer results and evaluating mitigation measures of TDG supersaturation to reduce the harmful effects on aquatic ecosystems.


Assuntos
Modelos Teóricos , Gases , Monitoramento Ambiental/métodos
12.
J Environ Manage ; 360: 121155, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38761624

RESUMO

The establishment of large hydropower stations in the main stream poses a threat to fish habitats. Selecting suitable tributaries as alternative habitats is a practical measure for ecological environment protection during large hydropower station's construction. The small dams constructed on certain tributaries need to be removed in order to restore river connectivity. The removal of dams will activate hydro-sedimentary dynamics and change the original habitat in terms of topography and hydrodynamics. To explore the evolution of fish habitats following the removal of small dams, a dam-removed reach of a habitat-alternative tributary was selected as the research object, and the model of water-sediment transport and riverbed evolution in strongly disturbed dam-removed reaches and the model of fish habitat suitability evaluation were established. The key parameters calibration and model verification were completed by field monitoring results. The simulation results showed dramatic evolution in the reservoir riverbed in the initial stage after dam removal and during the high discharge period. One year after dam removal, there was a noticeable 4.0 m incision in front of the dam, along with a decrease in channel slope at the dam site from about 4.8% to approximately 1.5%. Downstream of the dam, alterations to the riverbed were mainly concentrated near the dam, and sedimentary bodies with a height of around 2.0 m have formed on the left bank following the high discharge period. The fish habitat in most areas of the dam-removed reach was suitable, except for the downstream high-velocity area. To compare the evolution process of fish habitat under two dam removal periods in wet and dry seasons, two dam removal schemes were implemented in March and June. The results showed that the riverbed evolved more gradually in the March scheme, creating a larger and continuous suitable habitat for fish. Therefore, the March scheme was recommended. By revealing the evolutionary pattern of fish habitat after dam removal, this research provides a reliable model for assessing and restoring habitats in dam-removed reaches, and enjoys significant implications for protecting river ecology in hydropower development reaches.


Assuntos
Ecossistema , Rios , Animais , Peixes , Centrais Elétricas , Conservação dos Recursos Naturais
13.
Plant Cell ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801741

RESUMO

The phytohormone jasmonate (JA) plays a central role in plant defenses against biotic stressors. However, our knowledge of the JA signaling pathway in rice (Oryza sativa) remains incomplete. Here, we integrated multi-omic data from three tissues to characterize the functional modules involved in organizing JA-responsive genes. In the core regulatory sector, MYC2 transcription factor transcriptional cascades are conserved. in different species but with distinct regulators (e.g. bHLH6 in rice)., in which genes are early expressed across all tissues. In the feedback sector, MYC2 also regulates the expression of JA repressor and catabolic genes, providing negative feedback that truncates the duration of JA responses. For example, the MYC2-regulated NAC (NAM, ATAF1/2 and CUC2) transcription factor genes NAC1, NAC3, and NAC4 encode proteins that repress JA signaling and herbivore resistance. In the tissue-specific sector, many late-expressed genes are associated with the biosynthesis of specialized metabolites that mediate particular defensive functions. For example, the terpene synthase gene TPS35 is specifically induced in the leaf sheath and TPS35 functions in defense against oviposition by brown planthoppers and the attraction of this herbivore's natural enemies. Thus, by characterizing core, tissue-specific, and feedback sectors of JA-elicited defense responses, this work provides a valuable resource for future discoveries of key JA components in this important crop.

14.
Foodborne Pathog Dis ; 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38557159

RESUMO

The urgent need for comprehensive and systematic analyses of Shigella as the key pathogen led us to meticulously explore the epidemiology and molecular attributes of Shigella isolates. Accordingly, we procured 24 isolates (10 from Xinjiang and 14 from Wuhan, China) and performed serotype identification and antimicrobial susceptibility testing. Resistance gene detection and homology analysis by polymerase chain reaction and pulsed-field gel electrophoresis (PFGE), respectively, were performed for genetic diversity analysis. All isolates were identified as Shigella flexneri, with 70% (35.4-91.9%) and 30% (8.1-64.6%) of the Xinjiang isolates and 85.7% (56.2-97.5%) and 14.3% (2/14, 2.5-43.9%) of the Wuhan isolates belonging to serotype 2a and serotype 2b, respectively. All isolates displayed resistance to at least two antibiotics and complete resistance to ampicillin. Multidrug resistance (MDR) was recorded in 70.8% (48.8-86.6%) of isolates, with Xinjiang isolates exhibiting relatively higher resistance to ampicillin-sulbactam, piperacillin, ceftriaxone, and aztreonam. Conversely, Wuhan isolates displayed higher MDR and resistance to tetracycline, ciprofloxacin, levofloxacin, and cefepime relative to Xinjiang isolates. Molecular scrutiny of antibiotic-resistance determinants revealed that blaTEM was the main mechanism of ampicillin resistance, blaCTX-M was the main gene for resistance to third- and fourth-generation cephalosporins, and tetB was the predominant gene associated with tetracycline resistance. Four Xinjiang and seven Wuhan isolates shared T1-clone types (>85%), and two Xinjiang and one Wuhan isolates were derived from the T6 clone with a high similarity of 87%. Six PFGE patterns (T1, T2, T5, T6-3, T8, and T10) of S. flexneri were associated with MDR. Thus, there is a critical need for robust surveillance and control strategies in managing Shigella infections, along with the development of targeted interventions and antimicrobial stewardship programs tailored to the distinct characteristics of Shigella isolates in different regions of China.

15.
Apoptosis ; 2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38678130

RESUMO

High-altitude exposure has been linked to cardiac dysfunction. Silent information regulator factor 2-related enzyme 1 (sirtuin 1, SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, plays a crucial role in regulating numerous cardiovascular diseases. However, the relationship between SIRT1 and cardiac dysfunction induced by hypobaric hypoxia (HH) remains unexplored. This study aims to assess the impact of SIRT1 on HH-induced cardiac dysfunction and delve into the underlying mechanisms, both in vivo and in vitro. In this study, we have demonstrated that exposure to HH results in cardiomyocyte injury, along with the downregulation of SIRT1 and mitochondrial dysfunction. Upregulating SIRT1 significantly inhibits mitochondrial fission, improves mitochondrial function, reduces cardiomyocyte injury, and consequently enhances cardiac function in HH-exposed rats. Additionally, HH exposure triggers aberrant expression of mitochondrial fission-regulated proteins, with a decrease in PPARγ coactivator 1 alpha (PGC-1α) and mitochondrial fission factor (MFF) and an increase in mitochondrial fission 1 (FIS1) and dynamin-related protein 1 (DRP1), all of which are mitigated by SIRT1 upregulation. Furthermore, inhibiting PGC-1α diminishes the positive effects of SIRT1 regulation on the expression of DRP1, MFF, and FIS1, as well as mitochondrial fission. These findings demonstrate that SIRT1 alleviates HHinduced cardiac dysfunction by preventing mitochondrial fission through the PGC-1α-DRP1/FIS1/MFF pathway.

16.
Sci Rep ; 14(1): 8670, 2024 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622371

RESUMO

Hypoxic pulmonary hypertension (HPH) is a pulmonary vascular disease primarily characterized by progressive pulmonary vascular remodeling in a hypoxic environment, posing a significant clinical challenge. Leveraging data from the Gene Expression Omnibus (GEO) and human autophagy-specific databases, osteopontin (OPN) emerged as a differentially expressed gene, upregulated in cardiovascular diseases such as pulmonary arterial hypertension (PAH). Despite this association, the precise mechanism by which OPN regulates autophagy in HPH remains unclear, prompting the focus of this study. Through biosignature analysis, we observed significant alterations in the PI3K-AKT signaling pathway in PAH-associated autophagy. Subsequently, we utilized an animal model of OPNfl/fl-TAGLN-Cre mice and PASMCs with OPN shRNA to validate these findings. Our results revealed right ventricular hypertrophy and elevated mean pulmonary arterial pressure (mPAP) in hypoxic pulmonary hypertension model mice. Notably, these effects were attenuated in conditionally deleted OPN-knockout mice or OPN-silenced hypoxic PASMCs. Furthermore, hypoxic PASMCs with OPN shRNA exhibited increased autophagy compared to those in hypoxia alone. Consistent findings from in vivo and in vitro experiments indicated that OPN inhibition during hypoxia reduced PI3K expression while increasing LC3B and Beclin1 expression. Similarly, PASMCs exposed to hypoxia and PI3K inhibitors had higher expression levels of LC3B and Beclin1 and suppressed AKT expression. Based on these findings, our study suggests that OPNfl/fl-TAGLN-Cre effectively alleviates HPH, potentially through OPN-mediated inhibition of autophagy, thereby promoting PASMCs proliferation via the PI3K-AKT signaling pathway. Consequently, OPN emerges as a novel therapeutic target for HPH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Camundongos , Humanos , Animais , Hipertensão Pulmonar/tratamento farmacológico , Osteopontina/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteína Beclina-1/genética , Proteína Beclina-1/metabolismo , Artéria Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Hipóxia/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , RNA Interferente Pequeno/metabolismo , Autofagia/genética , Proliferação de Células , Miócitos de Músculo Liso/metabolismo , Remodelação Vascular
17.
Discov Oncol ; 15(1): 102, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38573548

RESUMO

BACKGROUND: Abnormal expression of protein tyrosine kinase 6 (PTK6) has been proven to be involved in the development of gynecological tumors. However, its immune-related carcinogenic mechanism in other tumors remains unclear. OBJECTIVE: The aim of this study was to identify PTK6 as a novel prognostic biomarker in pan-cancer, especially in lung adenocarcinoma (LUAD), which is correlated with immune infiltration, and to clarify its clinicopathological and prognostic significance. METHODS: The prognostic value and immune relevance of PTK6 were investigated by using bio-informatics in this study. PTK6 expression was validated in vitro experiments (lung cancer cell lines PC9, NCI-H1975, and HCC827; human normal lung epithelial cells BEAS-2B). Western blot (WB) revealed the PTK6 protein expression in lung cancer cell lines. PTK6 expression was inhibited by Tilfrinib. Colony formation and the Cell Counting Kit-8 (CCK-8) assay were used to detect cell proliferation. The wound healing and trans-well were performed to analyze the cell migration capacity. Then flow cytometry was conducted to evaluate the cell apoptosis. Eventually, the relationship between PTK6 and immune checkpoints was examined. WB was used to estimate the PD-L1 expression at different Tilfrinib doses. RESULTS: PTK6 was an independent predictive factor for LUAD and was substantially expressed in LUAD. Pathological stage was significantly correlated with increased PTK6 expression. In accordance with survival analysis, poor survival rate in LUAD was associated with a high expression level of PTK6. Functional enrichment of the cell cycle and TGF-ß signaling pathway was demonstrated by KEGG and GSEA analysis. Moreover, PTK6 expression considerably associated with immune infiltration in LUAD, as determined by immune analysis. Thus, the result of vitro experiments indicated that cell proliferation and migration were inhibited by the elimination of PTK6. Additionally, PTK6 suppression induced cell apoptosis. Obviously, PD-L1 protein expression level up-regulated while PTK6 was suppressed. CONCLUSION: PTK6 has predictive value for LUAD prognosis, and could up regulated PD-L1.

18.
PLoS One ; 19(4): e0298098, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573975

RESUMO

Three evident and meaningful characteristics of disruptive technology are the zeroing effect that causes sustaining technology useless for its remarkable and unprecedented progress, reshaping the landscape of technology and economy, and leading the future mainstream of technology system, all of which have profound impacts and positive influences. The identification of disruptive technology is a universally difficult task. Therefore, this paper aims to enhance the technical relevance of potential disruptive technology identification results and improve the granularity and effectiveness of potential disruptive technology identification topics. According to the life cycle theory, dividing the time stage, then constructing and analyzing the dynamic of technology networks to identify potential disruptive technology. Thereby, using the Latent Dirichlet Allocation (LDA) topic model further to clarify the topic content of potential disruptive technologies. This paper takes the large civil unmanned aerial vehicles (UAVs) as an example to prove the feasibility and effectiveness of the model. The results show that the potential disruptive technology in this field is the data acquisition, main equipment, and ground platform intelligence.


Assuntos
Tecnologia Disruptiva , Tecnologia , Tecnologia de Sensoriamento Remoto/métodos
19.
Int J Gen Med ; 17: 1221-1231, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38559593

RESUMO

Purpose: It remains unclear whether the MTHFR C677T, MTHFR A1298C and ABCB1 C3435T genetic variants are associated with methotrexate (MTX) elimination delay and high-dose MTX (HD-MTX) toxicities in the treatment of pediatric acute lymphoblastic leukemia (ALL). The aim of our study was to analyze the potential predictive role of MTHFR C677T, MTHFR A1298C and ABCB1 C3435T in toxicities and the relationship between these variants and MTX elimination delay during HD-MTX therapy in pediatric ALL patients. Patients and Methods: We conducted a retrospective study on ALL patients receiving HD-MTX treatment with available MTHFR C677T, MTHFR A1298C and ABCB1 C3435T genotype and 44-h plasma MTX levels. Logistic regression analyses and chi-square tests were used to assess the relationship between the variants and HD-MTX toxicities and MTX elimination delay. Results: Genotype frequencies were in Hardy-Weinberg equilibrium. MTX elimination delay did not significantly differ between MTHFR C677T and MTHFR A1298C or ABCB1 C3435T. Leukopenia (P=0.028), neutropenia (P=0.034) and oral mucositis (P=0.023) were 6.444-fold, 4.978-fold and 9.643-fold increased, respectively, in ABCB1 C3435T homozygous genotype (TT) patients compared to wild-type (CC) patients. No significant association was found between the toxicities investigated and MTHFR C677T or MTHFR A1298C. Conclusion: This study showed that the ABCB1 C3435T homozygous allele genotype (TT) is associated with increased MTX-related toxicities (leukopenia, neutropenia and oral mucositis). These results may help to distinguish pediatric ALL patients with a relatively high risk of MTX-related toxicities before HD-MTX infusion and optimize MTX treatment.

20.
J Agric Food Chem ; 72(14): 8200-8213, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38560889

RESUMO

Zearalenone (ZEN) is a mycotoxin that is harmful to humans and animals. In this study, female and male rats were exposed to ZEN, and the results showed that ZEN reduced the farnesoid X receptor (FXR) expression levels in the liver and disrupted the enterohepatic circulation of bile acids (BAs). A decrease in food intake induced by ZEN was negatively correlated with an increase in the level of total BAs. BA-targeted metabolomics revealed that ZEN increased glycochenodeoxycholic acid levels and decreased the ratio of conjugated BAs to unconjugated BAs, which further increased the hypothalamic FXR expression levels. Preventing the increase in total BA levels induced by ZEN via Lactobacillus rhamnosus GG intervention restored the appetite. In conclusion, ZEN disrupted the enterohepatic circulation of BAs to decrease the level of food intake. This study reveals a possible mechanism by which ZEN affects food intake and provides a new approach to decrease the toxic effects of ZEN.


Assuntos
Ácidos e Sais Biliares , Zearalenona , Humanos , Ratos , Masculino , Feminino , Animais , Ácidos e Sais Biliares/metabolismo , Zearalenona/metabolismo , Fígado/metabolismo , Hipotálamo , Ingestão de Alimentos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...