Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Foods ; 13(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38731743

RESUMO

As the most consumed tea in the world, all kinds of black tea are developed from Wuyi black tea. In this study, quality components, regulatory gene expression, and key enzyme activity during the processing were analyzed to illustrate the taste formation of WBT. Withering mainly affected the content of amino acids, while catechins and tea pigments were most influenced by rolling and the pre-metaphase of fermentation. Notably, regulatory gene expression was significantly down-regulated after withering except for polyphenoloxidase1, polyphenoloxidase2, leucoanthocyanidin dioxygenase, chalcone isomerase, and flavonoid 3', 5'-hydroxylase. Co-expression of flavonoid pathway genes confirmed similar expression patterns of these genes in the same metabolic pathway. Interestingly, rolling and fermentation anaphase had a great effect on polyphenol oxidase, and fermentation pre-metaphase had the greatest effect on cellulase. Since gene regulation mainly occurs before picking, the influence of chemical reaction was greater during processing. It was speculated that polyphenol oxidase and cellulase, which promoted the transformation of quality components, were the key factors in the quality formation of WBT. The above results provide theoretical basis for the processing of WBT and the reference for producing high-quality black tea.

2.
World J Gastroenterol ; 30(13): 1911-1925, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659485

RESUMO

BACKGROUND: Liuweiwuling Tablet (LWWL) is a Chinese patent medicine approved for the treatment of chronic inflammation caused by hepatitis B virus (HBV) infection. Previous studies have indicated an anti-HBV effect of LWWL, specifically in terms of antigen inhibition, but the underlying mechanism remains unclear. AIM: To investigate the potential mechanism of action of LWWL against HBV. METHODS: In vitro experiments utilized three HBV-replicating and three non-HBV-replicating cell lines. The in vivo experiment involved a hydrodynamic injection-mediated mouse model with HBV replication. Transcriptomics and metabolomics were used to investigate the underlying mechanisms of action of LWWL. RESULTS: In HepG2.1403F cells, LWWL (0.8 mg/mL) exhibited inhibitory effects on HBV DNA, hepatitis B surface antigen and pregenomic RNA (pgRNA) at rates of 51.36%, 24.74% and 50.74%, respectively. The inhibition rates of LWWL (0.8 mg/mL) on pgRNA/covalently closed circular DNA in HepG2.1403F, HepG2.2.15 and HepG2.A64 cells were 47.78%, 39.51% and 46.74%, respectively. Integration of transcriptomics and metabolomics showed that the anti-HBV effect of LWWL was primarily linked to pathways related to apoptosis (PI3K-AKT, CASP8-CASP3 and P53 pathways). Apoptosis flow analysis revealed that the apoptosis rate in the LWWL-treated group was significantly higher than in the control group (CG) among HBV-replicating cell lines, including HepG2.2.15 (2.92% ± 1.01% vs 6.68% ± 2.04%, P < 0.05), HepG2.A64 (4.89% ± 1.28% vs 8.52% ± 0.50%, P < 0.05) and HepG2.1403F (3.76% ± 1.40% vs 7.57% ± 1.35%, P < 0.05) (CG vs LWWL-treated group). However, there were no significant differences in apoptosis rates between the non-HBV-replicating HepG2 cells (5.04% ± 0.74% vs 5.51% ± 1.57%, P > 0.05), L02 cells (5.49% ± 0.80% vs 5.48% ± 1.01%, P > 0.05) and LX2 cells (6.29% ± 1.54% vs 6.29% ± 0.88%, P > 0.05). TUNEL staining revealed a significantly higher apoptosis rate in the LWWL-treated group than in the CG in the HBV-replicating mouse model, while no noticeable difference in apoptosis rates between the two groups was observed in the non-HBV-replicating mouse model. CONCLUSION: Preliminary results suggest that LWWL exerts a potent inhibitory effect on wild-type and drug-resistant HBV, potentially involving selective regulation of apoptosis. These findings offer novel insights into the anti-HBV activities of LWWL and present a novel mechanism for the development of anti-HBV medications.


Assuntos
Antivirais , Apoptose , DNA Viral , Medicamentos de Ervas Chinesas , Vírus da Hepatite B , Comprimidos , Replicação Viral , Apoptose/efeitos dos fármacos , Animais , Humanos , Vírus da Hepatite B/efeitos dos fármacos , Medicamentos de Ervas Chinesas/farmacologia , Camundongos , Células Hep G2 , Antivirais/farmacologia , Replicação Viral/efeitos dos fármacos , Modelos Animais de Doenças , Antígenos de Superfície da Hepatite B/metabolismo , Masculino , Hepatite B/tratamento farmacológico , Hepatite B/virologia , RNA Viral/metabolismo , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/virologia
3.
Environ Technol ; : 1-9, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522072

RESUMO

The overuse of tetracycline (TC) has led to the accumulation of antibiotic residues in drinking water and animal products, which can consequently lead to bacteria resistance and chronic disease in humans. Urgently addressing the need for a rapid, user-friendly, and point-of-care test for TC detection. In this work, we use cyclen and citric acid to synthesise carbon dots (CDs) with a unique ring-shaped structure on their surface and combine them with europium (Eu3+) to form an Eu-CDs fluorescent probe. In the presence of TC in aqueous systems, the Eu-CDs probe emits two distinctive fluorescent signals: the stable blue emission from cyclen-modified CDs and the red emission from Eu3+,showing a proportional increase with TC concentration. The developed Eu-CDs probe demonstrates accurate and selective detection capabilities for TC class antibiotics among various interfering factors. The Eu-CDs probe exhibits excellent linearity within the concentration range of 0.04-2.4 µM and achieves an impressive detection limit of 2.7 nM. Moreover, point-of-care Eu-CDs test strips are designed, allowing convenient on-site TC analysis through the detection of a colour change from blue to red under a portable UV light. The results highlight the effectiveness of the proposed dual-mode ratiometric fluorescent Eu-CDs probe and test strips, offering a practical point-of-care testing strategy for real-world TC detection applications.

4.
Org Lett ; 26(11): 2271-2275, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38457924

RESUMO

A clean and direct three-component radical 1,2-difunctionalization of various alkenes with perfluoroalkyl iodides and thiosulfonates enabled by the electron donor-acceptor complex has been developed under light illumination at room temperature. The approach offers a convenient and environmentally friendly route for the simultaneous incorporation of Csp3-Rf and Csp3-S bonds, affording valuable polyfunctionalized alkane derivatives containing fluorine and sulfur in satisfactory yields. Consequently, this methodology holds significant value and practicality in the field of organic synthesis.

5.
Org Biomol Chem ; 22(4): 699-702, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-37999925

RESUMO

A novel and efficient metal-free cascade oxidative radical addition of styrenes is developed for the construction of 1,3-dichloro-1,5-diarylpentan-5-ones. This protocol presents a practical one-pot procedure that delivers highly functionalized 1,3-dichloro-1,5-diarylpentan-5-ones in moderate-to-good yields with a broad substrate scope under mild conditions.

6.
Appl Microbiol Biotechnol ; 107(20): 6237-6249, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37581624

RESUMO

Oxygenases are important biocatalysts to produce many industrially important biomolecules. Here, a novel oxygenase, named MoxA, was identified through screening of a deep-sea sediment metagenomic library. Sequence analysis showed MoxA contains 424 amino acid residues with a predicated molecular mass of 46.9 kDa. Multiple sequence alignment and phylogenetic analysis indicated the sequence might be a new member of monooxygenase subfamily. A recombinant MoxA was obtained through the functional expression of moxA gene in Escherichia coli. Characterization of the purified MoxA indicated that it is an alkaline oxygenase showing maximal activity at pH 8.0. The optimal temperature of MoxA was 37 ℃, and it retained more than 70% of its initial activity after 1 h at 20-50 ℃ exhibiting good thermostability. Furthermore, effect of metal ions and organic solvents on enzymatic activity was investigated, and the results showed that the activity of MoxA was enhanced by Cu2+, Zn2+, Co2+ and Mg2+ at 1 mM, and by Co2+, Ca2+ and Mg2+ at 5 mM. Moreover, the recombinant strain harboring MoxA was used as a whole-cell biocatalyst for the efficient biosynthesis of indigo showing promising conversion efficiency. The biochemical properties of MoxA indicated that it would provide great contribution for the indigo bioproduction. KEY POINTS: • A novel monooxygenase from a metagenomic library was characterized. • The activity of MoxA was enhanced by metal ions at 1 mM and 5 mM. • MoxA has an optimal temperature of 37 ℃ and exhibited high conversion capacity.


Assuntos
Índigo Carmim , Oxigenases de Função Mista , Sequência de Aminoácidos , Oxigenases de Função Mista/genética , Filogenia , Biblioteca Gênica , Temperatura , Metais , Íons , Concentração de Íons de Hidrogênio , Clonagem Molecular
7.
ChemSusChem ; 16(17): e202300377, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37140478

RESUMO

The development of sustainable and efficient C1 substitution methods is of central interest for organic synthesis and pharmaceuticals production, the methylation motifs bound to a carbon, nitrogen, or oxygen atom widely exist in natural products and top-selling drugs. In the past decades, a number of methods involving green and inexpensive methanol have already been disclosed to replace industrial hazardous and waste-generating C1 source. Among the various efforts, photochemical strategy is considered as a "renewable" alternative that shows great potential to selectively activate methanol to achieve a series of C1 substitutions at mild conditions, typically C/N-methylation, methoxylation, hydroxymethylation, and formylation. Herein the recent advances in selective transformation of methanol to various C1 functional groups via well-designed photochemical systems involving different types of catalysts or not is systematically reviewed. Both the mechanism and corresponding photocatalytic system were discussed and classified on specific methanol activation models. Finally, the major challenges and perspectives are proposed.

8.
Chemosphere ; 334: 138638, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37100254

RESUMO

The synthesis of metal nanoparticles using green chemistry methods has gained significant attention in the field of landscape enhancement. Researchers have paid close attention to the development of very effective green chemistry approaches for the production of metal nanoparticles (NPs). The primary goal is to create an environmentally sustainable technique for generating NPs. At the nanoscale, ferro- and ferrimagnetic minerals such as magnetite exhibit superparamagnetic properties (Fe3O4). Magnetic nanoparticles (NPs) have received increased interest in nanoscience and nanotechnology due to their physiochemical properties, small particle size (1-100 nm), and low toxicity. Biological resources such as bacteria, algae, fungus, and plants have been used to manufacture affordable, energy-efficient, non-toxic, and ecologically acceptable metallic NPs. Despite the growing demand for Fe3O4 nanoparticles in a variety of applications, typical chemical production processes can produce hazardous byproducts and trash, resulting in significant environmental implications. The purpose of this study is to look at the ability of Allium sativum, a member of the Alliaceae family recognized for its culinary and medicinal benefits, to synthesize Fe3O4 NPs. Extracts of Allium sativum seeds and cloves include reducing sugars like glucose, which may be used as decreasing factors in the production of Fe3O4 NPs to reduce the requirement for hazardous chemicals and increase sustainability. The analytic procedures were carried out utilizing machine learning as support vector regression (SVR). Furthermore, because Allium sativum is widely accessible and biocompatible, it is a safe and cost-effective material for the manufacture of Fe3O4 NPs. Using the regression indices metrics of root mean square error (RMSE) and coefficient of determination (R2), the X-ray diffraction (XRD) study revealed the lighter, smoother spherical forms of NPs in the presence of aqueous garlic extract and 70.223 nm in its absence. The antifungal activity of Fe3O4 NPs against Candida albicans was investigated using a disc diffusion technique but exhibited no impact at doses of 200, 400, and 600 ppm. This characterization of the nanoparticles helps in understanding their physical properties and provides insights into their potential applications in landscape enhancement.


Assuntos
Alho , Nanopartículas Metálicas , Nanopartículas Metálicas/toxicidade , Nanopartículas Metálicas/química , Óxido Ferroso-Férrico , Antioxidantes/química , Antifúngicos , Química Verde/métodos , Extratos Vegetais/química
9.
Perception ; 52(1): 40-55, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36398360

RESUMO

Social perceptions of speakers are influenced by their voice information, including vocal characteristics and semantic content. Our study investigated how individuals' warmth- and competence-related perceptions of speakers were affected by vocal pitch levels (i.e., high/low) and three kinds of semantic cues (i.e., prosocial, antisocial, and neutral) simultaneously. We have three key findings. First, antisocial cues negatively affected social perceptions, regardless of speakers' gender. However, prosocial cues did not have positive impacts on evaluations of speakers because ratings were similar between prosocial cues and neutral cues. Second, female vocal pitch mattered for warmth-related perceptions but not for competence-related perceptions. The role of semantic cues should be additionally considered when investigating the impact of male vocal pitch on these perceptions. For example, higher-pitched men in prosocial contexts were perceived as warmer, while low-pitched men in antisocial contexts were judged as more competent. Third, the connection between vocal pitch and two kinds of perceptions showed an opposite trend, in which high pitch was related to more warmth but less competence, while the low pitch was associated with less warmth but more competence. These findings extend the understanding of the role of vocal pitch in the formation of stereotypes of strangers in different semantic contexts.


Assuntos
Sinais (Psicologia) , Voz , Humanos , Masculino , Feminino , Semântica , Percepção Social
11.
Toxicol Appl Pharmacol ; 454: 116215, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36067808

RESUMO

Breast cancer is a fatal cancer with the highest mortality in female. New strategies for anti-breast cancer are still urgently needed. Catalpol, an iridoid glycoside extracted from the traditional Chinese medicinal plant Rehmannia glutinosa, has shown anticancer efficacy in various cancer cells. However, its effect on breast cancer remains unclear. In this study, we aim to investigate the anti-breast cancer activity of catalpol and elucidate its underlying mechanism. Cell counting kit-8 (CCK-8) and morphology change showed that catalpol could inhibit the proliferation and viability of MCF-7 cells. Catalpol administration reduced the tumor volume in xenograft model. Catalpol induced apoptosis in MCF-7 cells confirmed by Hoechst 33342 staining and Annexin V-FITC/PI double staining. In vivo, catalpol also induced apoptosis as seen from the increased level of terminal-deoxynucleoitidyl transferase mediated nick end labeling (TUNEL) in tumor. According to JC-1 and Dichlorodi-hydrofluorescein Diacetate (DCFH-DA) staining, loss of mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) generation was found in MCF-7 cells treated with catalpol. Furthermore, catalpol also increased the level of cytoplasmic cytochrome c and activity of caspase-3 in MCF-7 cells. Likewise, histopathological and immunohistochemical (IHC) assay also found that catalpol enhanced the levels of cytochrome c and caspase-3 in breast cancer tissues. Ultimately, acetylation, 2-hydroxyisobutyrylation and lactylation were dramatically increased, whereas succinylation, malonylation and phosphorylation were markedly decreased in the breast cancer tumor treated with catalpol. Taken together, catalpol inhibited breast cancer in vitro and in vivo through induction of apoptosis via mitochondria apoptosis pathway and regulation of protein post-translational modifications (PTMs). Thus, it can be considered as an excellent candidate compound for treatment of breast cancer.


Assuntos
Neoplasias da Mama , Citocromos c , Apoptose , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Caspase 3/metabolismo , Citocromos c/metabolismo , Feminino , Humanos , Glucosídeos Iridoides/farmacologia , Glucosídeos Iridoides/uso terapêutico , Mitocôndrias , Processamento de Proteína Pós-Traducional , Espécies Reativas de Oxigênio/metabolismo
12.
Neurotox Res ; 40(4): 961-972, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35699892

RESUMO

Alzheimer's disease (AD) causes progressive decline of memory and cognitive deficits. Because of its complicated pathogenesis, the prevention and therapy of AD remain an enormous challenge. It has been reported that catalpol possessed neuroprotective effects against AD. However, the involved mechanism still needs to be intensively studied. Therefore, the effects of catalpol on N2a/APP695swe cells and APP/PS1 mice were identified in the current study. Catalpol could improve cytotoxicity according to CCK-8 assay and ameliorate cellular morphological changes in N2a/APP695swe cells. Neuronal structural damage in the hippocampal CA1 region of APP/PS1 AD mice was improved according to HE staining and immunohistochemistry of NeuN. Meanwhile, catalpol administration ameliorated cognitive deficits confirmed by behavior performance of APP/PS1 mice. Hoechst 33,342 staining and Annexin V-FITC/PI double staining demonstrated that catalpol could reduce apoptosis in N2a/APP695swe cells. Likewise, TUNEL staining also manifested that catalpol significantly reduced apoptosis in hippocampal CA1 region of APP/PS1 mice. Catalpol administration also could improve mitochondrial functions indicated by the ameliorative mitochondrial morphology, the decreased ROS generation, and the increased MMP in N2a/APP695swe cells. Subsequently, catalpol restrained oligomerization of Aß1-42, verified by a reduced ThT fluorescence dose- and time-dependently. Additionally, both Aß1-40 and Aß1-42 aggregation were decreased in N2a/APP695swe cells and APP/PS1 mice administrated with catalpol confirmed by ELISA and western blot. Western blot also showed that catalpol facilitated the phosphorylation of AKT and GSK3ß, and impeded the expression of BACE1 both in vivo and in vitro. Finally, a slight alteration in lactylation, 2-hydroxyisobutyrylation, and phosphorylation were found in N2a/APP695swe cells treated with catalpol. Together, these findings manifested that catalpol served a neuroprotective effect in AD and might be a novel and expecting prophylactic or curative candidate for AD or neurodegenerative diseases therapy.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Síndromes Neurotóxicas , Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide , Peptídeos beta-Amiloides/metabolismo , Peptídeos beta-Amiloides/toxicidade , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animais , Ácido Aspártico Endopeptidases , Modelos Animais de Doenças , Glucosídeos Iridoides , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Presenilina-1/genética
13.
Pharm Biol ; 60(1): 958-967, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35588406

RESUMO

CONTEXT: Schisandra chinensis (Turcz.) Baill. (Magnoliaceae) essential oil (SCEO) composition is rich in lignans that are believed to perform protective effects in the liver. OBJECTIVE: This study investigates the effects of SCEO in the treatment of acetaminophen (APAP)-induced liver injury in mice. MATERIALS AND METHODS: C57BL/6 mice (n = 56) were randomly divided into seven groups: normal; APAP (300 mg/kg); APAP plus bicyclol (200 mg/kg); APAP plus SCEO (0.25, 0.5, 1, 2 g/kg). Serum biochemical parameters for liver function, inflammatory factors, and antioxidant activities were determined. The protein expression levels of Nrf2, GCLC, GCLM, HO-1, p62, and LC3 were assessed by western blotting. Nrf2, GCLC, HO-1, p62, and LC3 mRNA were detected by real-time PCR. RESULTS: Compared to APAP overdose, SCEO (2 g/kg) pre-treatment reduced the serum levels of AST (79.4%), ALT (84.6%), TNF-α (57.3%), and IL-6 (53.0%). In addition, SCEO (2 g/kg) markedly suppressed cytochrome P450 2E1 (CYP2E1) (15.4%) and attenuated the exhaustion of GSH (43.6%) and SOD (16.8%), and the accumulation of MDA (22.6%) in the liver, to inhibit the occurrence of oxidative stress. Moreover, hepatic tissues from our experiment revealed that SCEO pre-treatment mitigated liver injury caused by oxidative stress by increasing Nrf2, HO-1, and GCL. Additionally, SCEO activated autophagy, which upregulated hepatic LC3-II and decreased p62 in APAP overdose mice (p < 0.05). DISCUSSION AND CONCLUSIONS: Our evidence demonstrated that SCEO protects hepatocytes from APAP-induced liver injury in vivo and the findings will provide a reliable theoretical basis for developing novel therapeutics.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Doença Hepática Induzida por Substâncias e Drogas , Óleos Voláteis , Schisandra , Acetaminofen/toxicidade , Animais , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Doença Hepática Crônica Induzida por Substâncias e Drogas/metabolismo , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/metabolismo , Óleos Voláteis/farmacologia , Estresse Oxidativo , Schisandra/metabolismo
14.
Heart Lung ; 52: 182-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35101277

RESUMO

Myxoma is the most common type of primary cardiac tumors, accounting for 50%-80% of them. Cardiac myxomas are difficult to detect due to the lack of specific signs and symptoms and even benign tumors can cause serious consequences. Cardiac failure, atrio-ventricular valve obstruction or the embolization phenomenon can quietly occur in patients with cardiac myxomas. Here, we report three extraordinary cases, each of which vary in the first symptom. One case involved a 66-year-old man who had no underlying heart disease but suddenly developed chest tightness and got out of breath after exercising. One case was a 36-year-old young woman with a two-year history of low blood pressure but suddenly suffered a stroke. The third case was a 42-year-old middle-aged woman who accidentally discovered a cardiac myxoma during the diagnosis and treatment of acute pancreatitis. Echocardiography revealed huge masses floating in their atriums. Under general anesthesia, all the patients underwent open-heart surgery and hematoxylin and eosin-stained sections of the samples confirmed myxomas. Although most patients with cardiac myxomas lack of specific systemic symptoms, typical myxomas are relatively easy to diagnose. There are currently no effective medical therapeutic to inhibit tumor growth and surgical resection is the mainstay of treatment, which prevents a dreaded complication resulted from systemic and pulmonary embolisms.


Assuntos
Neoplasias Cardíacas , Mixoma , Pancreatite , Doença Aguda , Adulto , Idoso , Feminino , Átrios do Coração , Neoplasias Cardíacas/diagnóstico , Neoplasias Cardíacas/patologia , Neoplasias Cardíacas/cirurgia , Humanos , Masculino , Pessoa de Meia-Idade , Mixoma/diagnóstico , Mixoma/patologia , Mixoma/cirurgia , Pancreatite/complicações
15.
Neurotox Res ; 40(1): 230-240, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34994954

RESUMO

Alzheimer's disease (AD) is a typical neurodegenerative disease. Well-established studies have shown an elevated level of ROS (reactive oxygen species) that induces oxidative stress in AD. Saikosaponin-D exhibited significant therapeutic effects on neurodegenerative diseases. However, its in-depth molecular mechanisms against neurotoxicity remain not fully uncovered. Herein, the possible protective effects of saikosaponin-D on glutamate-induced neurotoxicity in SH-SY5Y cells and the underlying mechanism were elucidated. Saikosaponin-D pretreatment could ameliorate glutamate-induced cytotoxicity according to MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and depress apoptosis according to Hoechst 33,342 staining and Annexin V-FITC/PI double staining in SH-SY5Y cells. Additionally, saikosaponin-D administration suppressed oxidative stress in response to glutamate indicated by diminished intracellular ROS formation and reduced MDA (malondialdehyde) content in SH-SY5Y cells. These phenomena, appeared to correlate with the recovered cellular antioxidant enzyme activities and inducted HO-1 (heme oxygenase-1) expression accompanying the nuclear translocation of Nrf2 conduct by saikosaponin-D preconditioning which had been altered by glutamate, were correlated with its neuroprotective. Furthermore, addition of LY294002, a selective inhibitor of PI3K (phosphatidylinositol 3 kinase), blocked saikosaponin-D-caused Nrf2 nuclear translocation and reversed the protection of saikosaponin-D against glutamate in SH-SY5Y cells. Moreover, saikosaponin-D exhibited antioxidant potential with high free radical-scavenging activity as confirmed by a DPPH (2,2-diphenyl-1-picrylhydrazyl) and TEAC (Trolox equivalent antioxidant capacity) in a cell-free system in vitro. Taken together, our results indicated that saikosaponin-D enhanced cellular antioxidant capacity through not only intrinsic free radical-scavenging activity but also induction of endogenous antioxidant enzyme activities and HO-1 expression mediated, at least in part, by activating PI3K and subsequently Nrf2 nuclear translocation, thereby protecting the SH-SY5Y cells from glutamate-induced oxidative cytotoxicity. In concert, these data raise the possibility that saikosaponin-D may be an attractive candidate for prevention and treatment of AD and other diseases related to oxidation in the future.


Assuntos
Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores , Ácido Oleanólico , Estresse Oxidativo , Saponinas , Apoptose , Linhagem Celular Tumoral , Ácido Glutâmico/farmacologia , Heme Oxigenase-1/metabolismo , Humanos , Malondialdeído/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Doenças Neurodegenerativas , Fármacos Neuroprotetores/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Saponinas/farmacologia , Transdução de Sinais
16.
Psychopharmacology (Berl) ; 239(7): 2083-2092, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33710373

RESUMO

Paeonol is a biologically active component purified from the root bark of Cortex Moutan that exerts pharmacological effects on the cervical cancer. In this study, we aim to evaluate the anti-cervical cancer capacity of paeonol and to investigate the mechanism driving its anti-cervical cancer effect. Paeonol administration markedly restrained the proliferation and caused apoptosis in HeLa cells. Furthermore, paeonol treatment resulted in a mitochondrial dysfunction in HeLa cells, including the inducing of mitochondrial membrane potential (MMP), reactive oxygen species (ROS) production, and the release of cytochrome c. Moreover, the Bcl-2/Bax proportion was obviously downregulated and cleaved caspase-3 expression was evaluated through paeonol treatment. Additionally, the expression of p-PI3K and p-Akt was noticeably reduced in response to paeonol treatment in HeLa cells. Our findings indicated that paeonol exerts an anticancer potential in HeLa cells, at least in a manner, via triggering the mitochondrial pathway of cellular apoptosis by inhibiting PI3K/Akt signaling. Thus, paeonol has great potential as a promising therapeutic compound to resist human cervical cancer.


Assuntos
Caspases , Neoplasias do Colo do Útero , Acetofenonas , Apoptose , Caspases/metabolismo , Caspases/farmacologia , Caspases/uso terapêutico , Feminino , Células HeLa , Humanos , Mitocôndrias , Fosfatidilinositol 3-Quinases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/metabolismo
17.
Digital Chinese Medicine ; (4): 68-74, 2022.
Artigo em Inglês | WPRIM (Pacífico Ocidental) | ID: wpr-974085

RESUMO

@#Objective To explore the transitive regularity of holistic constituents from the crude slices of the medicinal raw materials (MCS) to the formula granules (FG), fufang decoction (FD), and finally, the concentrated pills (CP) of Liuwei Dihuang Fufang (六味地黄复方, LWDHF). Methods Samples for MCS, FG, FD, and CP of LWDHF were obtained, and a fingerprint database was established using high-performance liquid chromatography (HPLC), by separating the samples in an XB-C18 column and analyzing the transitive regularity of components using the total quantum statistical moment (TQSM), including total quantum zero moment (AUCT), total quantum first moment (MRTT), total quantum second moment (VRTT), and its similarity approach. The AUCT, MRTT, and VRTT were calculated based on the representative HPLC chromatograms of FG, FD, and CP of LWDHF. Results AUCT of FG, FD, and CP of LWDHF was 71 804, 46 553, and 144 646 µV·s, respectively; MRTT was 14.43, 14.54, and 18.85 min, respectively; and VRTT was 106.98, 112.84, and 269.12 min2, respectively. Comparing the similarity of FG/FD, FG/CP and FD/CP of LWDHF, the TQSM similarity values were 98.66%, 76.62%, and 75.37%, respectively, whereas the traditional similarity evaluation values were 98.68%, 85.43%, and 85.60%, respectively. Conclusion The results perform little distinction in the total composition between FG and FD, whereas some distinction existed between FD and CP. Experimental evidence, therefore indicates that FG could be used as the alternative of MCS in clinical applications.

18.
Front Plant Sci ; 12: 665470, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804077

RESUMO

Evaluating the pyrolysis of lignocellulose via theoretical and computational approaches is of great importance for the efficient utilization of biomass. In this work, the dynamic changes in physicochemical properties of eucalyptus and bamboo during plant-rich metallic element-catalyzed pyrolysis process were investigated, and their thermal decomposition behaviors were explored by kinetic analysis. Results showed that the metal absorption capacity and thermal stability of eucalyptus were better than those of bamboo. The temperatures corresponding to the initial devolatilization and the highest weight loss value of eucalyptus/bamboo decreased in the catalysis order of Mg > Fe > Ca > Cu > K > Na. Fourier-transform infrared (FT-IR) results showed that the thermal stability of ester bond of glucuronoarabinoxylan was higher than that of acetyl groups. The maximum weight loss rate could be observed for samples with the lowest metal-loaded concentration (5%). Moreover, Mg and Fe presented the better catalytic performance for facilitating the lignocellulose pyrolysis in comparison with other investigated metallic elements.

19.
Cell Death Discov ; 7(1): 362, 2021 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-34811346

RESUMO

Emerging evidence has demonstrated that circular RNAs (circRNAs) take part in the initiation and development of pancreatic ductal adenocarcinoma (PDA), a deadly neoplasm with an extremely low 5-year survival rate. Reprogrammed glucose metabolism is a key feature of tumour development, including PDA. In this research, we evaluated the role of circRNAs in reprogrammed glucose metabolism in PDA. RNA sequencing under various glucose incubation circumstances was performed. A new circMYOF was identified. Sanger sequencing and RNase R treatment confirmed its circular RNA characteristics. Real-time PCR indicated that it was highly expressed in PDA clinical specimens and cell lines. Gain-of- and loss-of-function assays showed that circMYOF induced progression in PDA. Mechanistically, RNA pull-down and luciferase reporter experiments elucidated that circMYOF, as a competing endogenous RNA for miR-4739, facilitated glycolysis via the VEGFA/PI3K/AKT pathway. Taken together, our findings indicate that circMYOF may work as a desirable biomarker and therapeutic target for PDA patients.

20.
Front Pharmacol ; 12: 756975, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34776974

RESUMO

Liuweiwuling Tablet (LWWL) is a licensed Chinese patent medicine (approval number: Z20060238) included in the national health insurance for anti-inflammation of chronic HBV infection, whereas its anti-HBV effect remains clarification. The study aimed to clarify its antiviral effect and related mechanisms. HepG2.2.15 cells (wild-type HBV-replicating cells) and HepG2. A64 cells (entecavir-resistant HBV-replicating cells) were used for in vitro test. Hydrodynamic injection-mediated HBV-replicating mouse model was used for in vivo test. Active compounds and related mechanisms for antiviral effect of LWWL were analyzed using network pharmacology and transcriptomics. The inhibition rates of LWWL (0.8 mg/ml) on HBV DNA, HBsAg, and pgRNA were 57.06, 38.55, and 62.49% in HepG2.2.15 cells, and 51.57, 17.57, and 53.88% in HepG2. A64 cells, respectively. LWWL (2 g kg-1 d-1 for 4 weeks)-treated mice had 1.16 log10 IU/mL decrease of serum HBV DNA, and more than 50% decrease of serum HBsAg/HBeAg and hepatic HBsAg/HBcAg. Compared to tenofovir control, LWWL was less effective in suppressing HBV DNA but more effective in suppressing HBV antigens. Thirteen differentially-expressed genes were found in relation to HBV-host interaction and some of them were enriched in interferon (IFN)-ß pathway in LWWL-treated HepG2.2.15 cells. CD3+CD4+ T-cell frequency and serum IFN-γ were significantly increased in LWWL-treated mice compared to LWWL-untreated mice. Among 26 compounds with potential anti-HBV effects that were predicted by network pharmacology, four compounds (quercetin, luteolin, wogonin, and kaempferol) were experimentally confirmed to have antiviral potency. In conclusion, LWWL had potent inhibitory effect on both wild-type and entecavir-resistant HBV, which might be associated with increasing IFN-ß and IFN-γ production.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...