Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 8.362
Filtrar
1.
Food Chem ; 462: 140974, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39197239

RESUMO

Total starch granule-associated proteins (tGAP), including granule-channel (GCP) and granule-surface proteins (GSP), alter the physicochemical properties of starches. Quinoa starch (QS) acts as an effective emulsifier in Pickering emulsion. However, the correlation between the tGAP and the emulsifying capacity of QS at different scales remains unclear. Herein, GCP and tGAP were selectively removed from QS, namely QS-C and QS-A. Results indicated that the loss of tGAP increased the water permeability and hydrophilicity of the starch particles. Mesoscopically, removing tGAP decreased the diffusion rate and interfacial viscous modulus. Particularly, GSP had a more profound impact on the interfacial modulus than GCP. Microscopically and macroscopically, the loss of tGAP endowed QS with weakened emulsifying ability in terms of emulsions with larger droplet size and diminished rheological properties. Collectively, this work demonstrated that tGAP played an important role in the structural and interfacial properties of QS molecules and the stability of QS-stabilized emulsions.


Assuntos
Chenopodium quinoa , Emulsificantes , Emulsões , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Plantas , Amido , Chenopodium quinoa/química , Amido/química , Emulsões/química , Emulsificantes/química , Proteínas de Plantas/química , Tamanho da Partícula , Reologia
2.
J Colloid Interface Sci ; 678(Pt C): 227-241, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39298974

RESUMO

The modulation of bimetallic oxide structures and development of efficient, easily recoverable catalysts are expected to effectively overcome the limitations associated with powdered catalysts in activating peroxymonosulfate (PMS). In this study, CuCo2O4 was successfully immobilized on the surface of nickel foam (NF) via an electrodeposition-calcination procedure, with highly efficient activation of PMS for tetracycline (TC) degradation (0.55 min-1). Besides acting as a support carrier and providing ample active sites, NF mediated electron transport, prevented the leaching of metal ions and enhanced the efficiency of recycling. Density functional theory (DFT) calculations and experimental tests illustrated that Cu/Co dual-sites can efficiently adsorb PMS, enabling simultaneous reduction and oxidation reactions. The dual-site synergy substantially decreased the adsorption barrier and increased the electron transfer rate. Especially, the Cu+/Cu2+ redox couple acted as an electron donor and facilitated rapid charge transfer, leading to the conversion of Co3+ to Co2+. Moreover, the CuCo2O4@NF + PMS system effectively eliminated TC by employing radical pathways (SO4•-, •OH) and nonradical processes (1O2, e-). Therefore, this study introduces a new approach to overcome the limitations of powdered bimetallic oxides, providing a promising solution for practical applications.

3.
J Ethnopharmacol ; : 118841, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299361

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Metabolic-associated fatty liver disease (MAFLD) and atherosclerosis are very common disorders that frequently coexist. The therapeutic efficacy of Huanglian Wendan (HLWD) decoction, a traditional Chinese medicine (TCM) prescription, is satisfactory in treating MAFLD associated with atherosclerosis. However, the underlying mechanisms through which HLWD exerts its effects need to be elucidated. Given the complex composition of HLWD and its multiple therapeutic targets, pharmacological investigation is challenging. AIM OF THIS STUDY: This study aimed to identify the effective compounds in HLWD and elucidate the mechanisms involved in its therapeutic effect on MAFLD associated with atherosclerosis. MATERIALS AND METHODS: We used a systematic pharmacology method to identify effective compounds present in HLWD and determine the mechanism by which it affects MAFLD associated with atherosclerosis. The effective components of HLWD were identified through ultrahigh-performance liquid chromatography-q exactive-orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap HRMS). Next, a comprehensive in silico method was used to predict potential related targets and disease targets for these compounds to establish corresponding pathways. The accuracy of our assumed systemic pharmacology results was determined by conducting follow-up experiments. RESULTS: By conducting UHPLC-Q-Orbitrap HRMS combined with network analysis, we identified 18 potentially active components of HLWD and assessed the inflammatory regulatory mechanism by which it affects MAFLD associated with atherosclerosis on the basis of 52 key targets. We used a high-fat, high-cholesterol (HFHC)-induced mice model of MAFLD associated with atherosclerosis to confirm our results. We found that administering HLWD significantly improved the appearance of their liver and reduced their body weight, liver weight, blood lipids, hepatic damage, and hepatic pathology. HLWD also decreased atherosclerotic lesion areas, foam cells, and inflammatory cells in the aorta. HLWD showed anti-inflammatory effects, suppressed M1 polarization, and promoted M2 polarization in the liver and aorta. HLWD might also regulate peroxisome proliferator-activated receptor-γ (PPARγ)/nuclear factor kappa-B (NF-κB) signaling to influence macrophage polarization and inflammation. CONCLUSIONS: Our results showed that HLWD protected against HFHC diet-induced MAFLD associated with atherosclerosis by regulating PPARγ/NF-κB signaling, thus adjusting macrophage polarization and inflammation. Additionally, pharmacochemistry research, network pharmacology analysis, and experimental verification can be combined to form a comprehensive model used in studies on TCM.

4.
Environ Res ; : 120030, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299450

RESUMO

Referring to the natural succession to restore polluted land is one of the most vital assignments to solving the environmental problems. However, there is little understanding of the natural restoration of nutrient biogeochemical cycles in abandoned land with severe metal pollution. To clarify the nutrient cycling process and the influence of organisms on it, we investigated the magnitude of rhizosphere effects on soil nitrogen (N), phosphorus (P) and sulphur (S) cycles in natural restoration of an abandoned metal mine, as well as the roles of plants and microorganisms in the nutrient cycles. Our data revealed that the rhizosphere had higher levels of ammoniation than non-rhizosphere soil at both stages of restoration. In the early stage, the rhizosphere had greater levels of inorganic phosphorus and organophosphorus solubilisation, as well as sulphite oxidation, compared to non-rhizosphere soil. The bacterial composition influenced the N and S cycles, while the fungal composition had the greatest effect on the P cycles. Furthermore, rhizosphere nutrition cycles and microbial communities altered according plant strategy. Overall, the plants that colonize the early stages of natural recovery demonstrate enhanced restoration of nutrient efficiency. These results contribute to further knowledge of nutrient recovery in mining areas, as well as suggestions for selecting remedial microorganisms and plants in metal-polluted environments.

5.
Infect Genet Evol ; : 105669, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39299538

RESUMO

OBJECTIVE: This study aims to analyze the genomic and clinical characteristics of Non-baumannii Acinetobacter strains misidentified as A. baumannii, causing bloodstream infections (BSIs) in our hospital. MATERIALS AND METHODS: Whole genome sequencing was performed and average nucleotide identity (ANI) was analyzed. Susceptibility testing was conducted using micro-broth methods. The distribution of antimicrobial resistance genes (ARGs) and mobile genetic elements (MGEs) was examined using online software tools. The prevalence of virulence factors (VFs) was investigated through nucleotide coding sequence comparisons. Genetic structures of blaOXA genes were analyzed by Gcluster software. Clinical information was collected from electronic medical records for patient characterization. RESULTS: ANI analysis identified five strains as Acinetobacter pittii, with the remaining four identified as A. geminorum, A. nosocomialis, A. soli and A. bereziniae. The GC content of all isolates was less than 38.9 % except for A. soli 16,294. All Non-baumannii Acinetobacter strains were relatively susceptible to antibiotics, except for one A. pittii isolate. Nine blaOXA variants were identified in seven isolates, with two isolates co-carrying 2 different types of blaOXA. Twenty-four insertion sequences (ISs) were identified, with ISAba and IS17 being the primary ISs. Five A. pittii isolates shared the same genetic structures around blaOXA. Genes related to adherence, immune modulation, and nutritional/metabolic factors were the most frequent. Few VFs were detected in A. soli 16,294 and A.bereziniae 14,325. CONCLUSIONS: The presence of carbapenem hydrolyzing oxacillinase encoding genes did not confer carbapenem resistance, possibly due to the lack of ISs in the blaOXA flanking sequences. Different blaOXA variants within distinct strains shared the same genetic structures, suggesting potential for multidrug resistance development, which warrants our attention.

6.
BMC Oral Health ; 24(1): 1112, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300426

RESUMO

BACKGROUND: The mandibular retromolar space (RMS) has not been extensively studied in relation to various sagittal skeletal classes and patterns of third-molar eruption. The objective of this study was to test the null hypothesis that there is no difference in the mandibular RMS among normodivergent subjects with different skeletal classes and patterns of mandibular third-molar eruption, using cone-beam computed tomography (CBCT). METHOD: A total of 105 normodivergent patients (20-40 years) were included in this study. Participants were categorized into Class I, II and III groups based on ANB and further impacted and erupted groups based on the eruption patterns of the mandibular third molars. Measurements of the mandibular RMS were taken at four planes parallel to the occlusal plane, along the cusp line. Comparative analyses were conducted among the three sagittal groups and between the impacted and erupted groups. RESULTS: The Class II group exhibited a statistically smaller RMS (P < 0.05). RMS was found to be larger in third-molar erupted group (P < 0.05). The rates of root contact and third-molar impaction was significantly higher in Class II group. (P < 0.05) CONCLUSIONS: The null hypothesis was rejected. Patients with Skeletal Class II tend to have a smaller mandibular RMS and a higher prevalence of root contact and third-molar impaction. The presence of impacted mandibular third molars was correlated with a shorter RMS. TRIAL REGISTRATION: Retrospectively registered.


Assuntos
Tomografia Computadorizada de Feixe Cônico , Mandíbula , Dente Serotino , Erupção Dentária , Humanos , Tomografia Computadorizada de Feixe Cônico/métodos , Dente Serotino/diagnóstico por imagem , Adulto , Mandíbula/diagnóstico por imagem , Feminino , Masculino , Erupção Dentária/fisiologia , Adulto Jovem , Dente Impactado/diagnóstico por imagem
7.
Adv Healthc Mater ; : e2402199, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39300854

RESUMO

Recently, it has been recognized that natural extracellular matrix (ECM) and tissues are viscoelastic, while only elastic properties have been investigated in the past. How the viscoelastic matrix regulates stem cell patterning is critical for cell-ECM mechano-transduction. Here, this study fabricated different methacrylated hyaluronic acid (HA) hydrogels using covalent cross-linking, consisting of two gels with similar elasticity (stiffness) but different viscoelasticity, and two gels with similar viscoelasticity but different elasticity (stiffness). Meanwhile, a second set of dual network hydrogels are fabricated containing both covalent and coordinated cross-links. Human spinal cord organoid (hSCO) patterning in HA hydrogels and co-culture with isogenic human blood vessel organoids (hBVOs) are investigated. The viscoelastic hydrogels promote regional hSCO patterning compared to the elastic hydrogels. More viscoelastic hydrogels can promote dorsal marker expression, while softer hydrogels result in higher interneuron marker expression. The effects of viscoelastic properties of the hydrogels become more dominant than the stiffness effects in the co-culture of hSCOs and hBVOs. In addition, more viscoelastic hydrogels can lead to more Yes-associated protein nuclear translocation, revealing the mechanism of cell-ECM mechano-transduction. This research provides insights into viscoelastic behaviors of the hydrogels during human organoid patterning with ECM-mimicking in vitro microenvironments for applications in regenerative medicine.

8.
Front Oncol ; 14: 1402994, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39301549

RESUMO

Background: There is still a lack of clinically validated biomarkers to screen lung cancer patients suitable for programmed dead cell-1 (PD-1)/programmed dead cell receptor-1 (PD-L1) immunotherapy. Detection of PD-L1 expression is invasively operated, and some PD-L1-negative patients can also benefit from immunotherapy; thus, the joint modeling of both deep learning images and clinical features was used to improve the prediction performance of PD-L1 expression in non-small cell lung cancer (NSCLC). Methods: Retrospective collection of 101 patients diagnosed with pathology in our hospital who underwent 18F FDG PET/CT scans, with lung cancer tissue Tumor Propulsion Score (TPS) ≥1% as a positive expression. Lesions were extracted after preprocessing PET/CT images, and using deep learning 3D DenseNet121 to learn lesions in PET, CT, and PET/CT images, 1,024 fully connected features were extracted; clinical features (age, gender, smoking/no smoking history, lesion diameter, lesion volume, maximum standard uptake value of lesions [SUVmax], mean standard uptake value of lesions [SUVmean], total lesion glycolysis [TLG]) were combined for joint modeling based on the structured data Category Embedding Model. Results: Area under a receiver operating characteristic (ROC) curve (AUC) and accuracy of predicting PD-L1 positive for PET, CT, and PET/CT test groups were 0.814 ± 0.0152, 0.7212 ± 0.0861, and 0.90 ± 0.0605, 0.806 ± 0.023, 0.70 ± 0.074, and 0.950 ± 0.0250, respectively. After joint clinical feature modeling, the AUC and accuracy of predicting PD-L1 positive for PET/CT were 0.96 ± 0.00905 and 0.950 ± 0.0250, respectively. Conclusion: This study combines the features of 18F-FDG PET/CT images with clinical features using deep learning to predict the expression of PD-L1 in NSCLC, suggesting that 18F-FDG PET/CT images can be conducted as biomarkers for PD-L1 expression.

9.
Adv Sci (Weinh) ; : e2401838, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-39301861

RESUMO

Protein surfaces have pivotal roles in interactions between proteins and other biological molecules. However, the structural dynamics of protein surfaces have rarely been explored and are poorly understood. Here, the surface of a single-stranded DNA (ssDNA) binding protein (SSB) with four DNA binding domains that bind ssDNA in binding site sizes of 35, 56, and 65 nucleotides per tetramer is investigated. Using oligonucleotides as probes to sense the charged surface, NaCl induces a two-state structural transition on the SSB surface even at moderate concentrations. Chelation of sodium ions with charged amino acids alters the network of hydrogen bonds and/or salt bridges on the surface. Such changes are associated with changes in the electrostatic potential landscape and interaction mode. These findings advance the understanding of the molecular mechanism underlying the enigmatic salt-induced transitions between different DNA binding site sizes of SSBs. This work demonstrates that monovalent salt is a key regulator of biomolecular interactions that not only play roles in non-specific electrostatic screening effects as usually assumed but also may configure the surface of proteins to contribute to the effective regulation of biomolecular recognition and other downstream events.

10.
Angew Chem Int Ed Engl ; : e202415856, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286944

RESUMO

The quality of organic thin films critically influences carrier dynamics in organic semiconductors. In neat/doped films, even tiny voids can be penetrated by water or oxygen molecules to create charge-trap states called water/oxygen-induced traps that significantly hinder carrier mobility. While the water/oxygen-induced traps in non-doped films and crystalline states have been investigated comprehensively, there is a lack of thorough examination regarding their properties in the doped state. Therefore, there is a high demand for a molecular design strategy that effectively modulates the molecular stacking behavior in doped films and practical devices and enhances the quality of these films. Herein, we proposed a versatile molecular design principle that enables the formation of "nano-cluster" structures on both the surface and interior of doped films in target molecule 10-(4-(4,6-diphenyl-1,3,5-triazin-2-yl)phenyl)-1'-(4-fluorophenyl)-10H-spiro[acridine-9,9'-xanthene] (DspiroO-F-TRZ), which is modified with a fluorophenyl group. These "nano-cluster" structures exhibit more uniform shapes within doped films and effectively reduce defective state densities while enhancing carrier injection and transport properties, ultimately improving device performance. Notably, TADF-OLED based on DspiroO-F-TRZ demonstrates nearly twice as much efficiency as its control counterpart due to contributions from 'nano-cluster' structure enhancements toward improved electroluminescence performance.

11.
Int J Biol Macromol ; 280(Pt 1): 135688, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39288853

RESUMO

Prenyltransferases play a pivotal role in the isoprenoid biosynthesis and transfer in insects. In the current study, two classes of prenyltransferases (MhieFPPS1 and MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α) were identified in the leaf beetle, Monolepta hieroglyphica. Phylogenetic analysis revealed that MhieFPPS1, MhieFPPS2, MhiePFT-ß and MhiePF/GGT-α were clustered in one clade with homologous in insects. Moreover, MhieFPPS2 lacked one aspartate-rich motif SARM. Molecular docking and kinetic analysis indicated that the (E)-GPP displayed higher affinity with MhieFPPS1 compared to DMAPP within the binding pocket containing metal binding sites (MG). The other class of prenyltransferases (MhiePFT-ß and MhiePF/GGT-α) lack the aspartate-rich motif. Docking results indicated that binding site of MhiePFT-ß involved divalent metal ions (Zn) and bound farnesyl or geranylgeranyl. In vitro, only recombiant MhieFPPS1 could catalyze the formation of (E)-farnesol against different combination of substrates, including IPP/DMAPP and IPP/(E)-GPP, highlighting the importance of SARM for enzyme activities. Kinetic analysis further indicated that MhiePFT-ß operated via Zn2+-dependent substrate binding, while MhiePF/GGT-α stabilized the ß-subunit during catalytic reaction. These findings contribute to a valuable insight in to understanding of the mechanisms involved in the biosynthesis and delivery of isoprenoid products in beetles.

12.
Biomed Opt Express ; 15(9): 5098-5114, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39296412

RESUMO

Detecting optical defocus at the retina is crucial for accurate accommodation and emmetropization. However, the optical characteristics of ocular defocus are not fully understood. To bridge this knowledge gap, we simulated polychromatic retinal image quality by considering both the monochromatic wavefront aberrations and chromatic aberrations of the eye, both in the fovea and the periphery (nasal visual field). Our study revealed two main findings: (1) chromatic and monochromatic aberrations interact to provide a signal to the retina (chromatic optical anisotropy) to discern positive from negative defocus and (2) that chromatic optical anisotropy exhibited notable differences among refractive error groups (myopes, emmetropes and hyperopes). These findings could enhance our understanding of the underlying mechanisms of defocus detection and their subsequent implications for myopia control therapies. Further research is needed to explore the retinal architecture's ability to utilize the optical signals identified in this study.

13.
J Colloid Interface Sci ; 678(Pt B): 545-558, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39260302

RESUMO

Controlling high recombination of photogenerated carriers and optimizing low cycling of metal valence states are the two key control steps in enhancing photo-Fenton oxidation. To achieve multiscale synergy of photo-Fenton degradation, graphite carbon-modified copper ferrite composites (C/CFO) with poor/rich dual electron reaction centers were synthesized through direct carbonization of Fe/Cu bimetallic organic frameworks. A novel photo-Fenton catalytic system was constructed by irradiating the Fenton reaction with visible light. The photo-Fenton degradation efficiency of C/CFO for tetracycline (100 mg‧L-1) was 93.69% ± 0.02%, and the degradation rate constant was 4.84 times higher than that of the control. Optimized preparation and catalytic conditions, ensured good cyclic stability and broad applicability of C/CFO. This excellent stability performance improvement can be attributed to the following main factors: (1) The introduction of graphite carbon not only increases the specific surface area of C/CFO, but also acts as a bridge between the dual electron reaction centers, facilitating the transfer of photogenerated electrons. (2) On the one hand, the electron-poor reaction centers Fe and Cu capture photogenerated electrons, accelerate the Fenton reaction, and realize the valence cycling of Fe and Cu. On the other hand, the electron-rich reaction centers (oxygen vacancies) act as active sites for H2O2 adsorption, which greatly accelerate the decomposition of H2O2. Overall, the synergy of dual electron reaction centers effectively promoted photo-Fenton oxidation.

14.
Nature ; 633(8030): 575-581, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39232169

RESUMO

Futuristic technologies such as morphing aircrafts and super-strong artificial muscles depend on metal alloys being as strong as ultrahigh-strength steel yet as flexible as a polymer1-3. However, achieving such 'strong yet flexible' alloys has proven challenging4-9 because of the inevitable trade-off between strength and flexibility5,8,10. Here we report a Ti-50.8 at.% Ni strain glass alloy showing a combination of ultrahigh yield strength of σy ≈ 1.8 GPa and polymer-like ultralow elastic modulus of E ≈ 10.5 GPa, together with super-large rubber-like elastic strain of approximately 8%. As a result, it possesses a high flexibility figure of merit of σy/E ≈ 0.17 compared with existing structural materials. In addition, it can maintain such properties over a wide temperature range of -80 °C to +80 °C and demonstrates excellent fatigue resistance at high strain. The alloy was fabricated by a simple three-step thermomechanical treatment that is scalable to industrial lines, which leads not only to ultrahigh strength because of deformation strengthening, but also to ultralow modulus by the formation of a unique 'dual-seed strain glass' microstructure, composed of a strain glass matrix embedded with a small number of aligned R and B19' martensite 'seeds'. In situ X-ray diffractometry shows that the polymer-like deformation behaviour of the alloy originates from a nucleation-free reversible transition between strain glass and R and B19' martensite during loading and unloading. This exotic alloy with the potential for mass producibility may open a new horizon for many futuristic technologies, such as morphing aerospace vehicles, superman-type artificial muscles and artificial organs.

15.
Syst Biol Reprod Med ; 70(1): 272-288, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39292564

RESUMO

Asthenozoospermia (AZS) is one of the most common types of male infertility. Current evidence revealed that type 2 diabetes mellitus (T2DM) is closely associated with declining semen quality, especially for poor sperm motility. This study aimed to uncover the genetic interrelationships and important biomarkers between AZS and T2DM. Transcriptome data regarding AZS and T2DM were downloaded from the Gene Expression Omnibus (GEO) database. We performed GO and pathway analysis, and protein-protein interaction (PPI) network construction for T2DM-related differentially expressed genes (DMRGs). Moreover, we calculated receiver operator characteristic (ROC) curve and conducted external independent validation. Expression of hub DMRGs was assessed for patients using the qPCR method. MiRNA interaction and immune infiltration were subsequently characterized. A total of 554 overlapping DMRGs were identified between the AZS/T2DM and healthy groups. These overlapping DMRG participated in the DNA damage-, energy metabolism-, and immune-related biological pathways. Module function analysis discovered that the top three PPI modules were tightly correlated with DNA damage-related processes. After external validation in other independent datasets, two hub DMRGs (TBC1D12 and SCG5) were obtained. ROC analysis revealed that TBC1D12 and SCG5 had good diagnostic performance (area under the curve > 0.75). Immune infiltration profile showed that the level of T cell co-stimulation and CD8+_T_cells were negatively related to the hub DMRGs expression. Mirna interaction analysis showed 15 significant hub DMRGs-miRNA interactions. The qPCR results showed that expression of TBC1D12 and SCG5 were significantly different between sperm samples from diabetic patients with AZS and controls. The present study revealed molecular signatures and critical pathways between the AZS and T2DM, and identified two hub DMRGs of TBC1D12 and SCG5. The data would provide novel understandings of shared pathogenic mechanisms in T2DM-associated AZS.


Assuntos
Astenozoospermia , Diabetes Mellitus Tipo 2 , Humanos , Masculino , Diabetes Mellitus Tipo 2/genética , Astenozoospermia/genética , Mapas de Interação de Proteínas , Redes Reguladoras de Genes , MicroRNAs/genética , Simulação por Computador , Transcriptoma , Perfilação da Expressão Gênica , Bases de Dados Genéticas
17.
Artigo em Inglês | MEDLINE | ID: mdl-39293734

RESUMO

OBJECTIVE: This study aims to evaluate the reproductive outcomes after hysteroscopic adhesiolysis in patients experiencing recurrent pregnancy loss (RPL) combined with intrauterine adhesions (IUA). DESIGN: Single-center retrospective cohort study. SETTING: International referral hospital for women with IUA and RPL. PATIENTS: Between January 2018 and June 2022, a cohort of 64 women diagnosed with RPL and IUA were studied, with a follow-up period of at least one year after hysteroscopic adhesiolysis. INTERVENTIONS: All patients had a diagnosis of IUA from the diagnostic hysteroscopy and were treated with hysteroscopic adhesiolysis, utilizing intraoperative ultrasound monitoring as required. MAIN MEASUREMENTS: Live birth rate and menstrual pattern change (subjective assessment) after hysteroscopic adhesiolysis. RESULTS: In our cohort, 59.38% (38/64) achieved pregnancy following hysteroscopic adhesiolysis, with 92.11% (35/38) conceiving within two years of the procedure. The miscarriage rate was recorded at 17.19% (11/64), and the live birth rate stood at 42.19% (27/64). Throughout the extended follow-up period, 64.06% (41/64) of the patients reported increased menstrual blood volume and improvements in menstrual patterns post-hysteroscopic adhesiolysis. Univariate analysis indicated that being aged ≥35 years (P=.026), having a history of infertility (P=.003), the presence of moderate or severe IUA (P=.023), and experiencing menstrual improvements post-surgery (P=.001) were independent predictors of live birth. Multivariate analysis further identified that women with a history of infertility had a reduced chance of live birth following hysteroscopic adhesiolysis (P=.008), while those who reported menstrual pattern improvements postoperatively had an increased probability of achieving a live birth (P=.031). CONCLUSIONS: Our findings indicate that RPL and IUA patients without prior infertility and showing menstrual pattern improvement after hysteroscopic adhesiolysis, are more likely to achieve live births. Standardized hysteroscopic treatment, postoperative anti-adhesion care, and early pregnancy planning are key to improving fertility outcomes in these patients.

18.
Phys Rev E ; 110(2-1): 024111, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39295008

RESUMO

The percolation phase transition of a continuum adaptive neuron system with homeostasis is investigated. In order to maintain their average activity at a particular level, each neuron (represented by a disk) varies its connection radius until the sum of overlapping areas with neighboring neurons (representing the overall connection strength in the network) has reached a fixed target area for each neuron. Tuning the two key parameters in the model, i.e., the density defined as the number of neurons (disks) per unit area and the sum of the overlapping area of each disk with its adjacent disks, can drive the system into the critical percolating state. These two parameters are inversely proportional to each other at the critical state, and the critical filling factors are fixed about 0.7157, which is much less than the case of the continuum percolation with uniform disks. It is also confirmed that the critical exponents in this model are the same as the two-dimensional standard lattice percolation. Although the critical state is relatively more sensitive and exhibits long-range spatial correlation, local fluctuations do not propagate in a long-range manner through the system by the adaptive dynamics, which renders the system overall robust against perturbations.

19.
Rice (N Y) ; 17(1): 56, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39218839

RESUMO

Seed vigor is a complex trait encompassing seed germination, seedling emergence, growth, seed longevity, and stress tolerance, all are crucial for direct seeding in rice. Here, we report that the AP2/ERF transcription factor OsRAV1 (RELATED TO ABI3 AND VP1) positively regulates seed germination, vigor, and salt tolerance. Additionally, OsRAV1 was differently expressed in embryo and endosperm, with the OsRAV1 localized in the nucleus. Transcriptomic analysis revealed that OsRAV1 modulates seed vigor through plant hormone signal transduction and phenylpropanoid biosynthesis during germination. Haplotype analysis showed that rice varieties carrying Hap3 displayed enhanced salt tolerance during seed germination. These findings suggest that OsRAV1 is a potential target in breeding rice varieties with high seed vigor suitable for direct seeding cultivation.

20.
JCI Insight ; 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39226105

RESUMO

The accumulation of mutant huntingtin protein aggregates in neurons is a pathological hallmark of Huntington's disease (HD). The glymphatic system, a brain-wide perivascular network, facilitates the exchange of interstitial fluid (ISF) and cerebrospinal fluid (CSF), supporting interstitial solute clearance of brain wastes. In this study, we employed dynamic glucose-enhanced (DGE) MRI to measure D-glucose clearance from CSF as a tool to predict glymphatic function in a mouse model of HD. We found significantly diminished CSF clearance efficiency in HD mice prior to phenotypic onset. The impairment of CSF clearance efficiency worsened with disease progression. These DGE MRI findings in compromised glymphatic function were further confirmed with fluorescence-based imaging of CSF tracer influx, suggesting an impaired glymphatic function in premanifest HD. Moreover, expression of the astroglial water channel aquaporin-4 (AQP4) in the perivascular compartment, a key mediator of glymphatic function, was significantly diminished in both HD mouse brain and human HD brain. Our data, acquired using a clinically translatable MRI, indicate a perturbed glymphatic network in the HD brain. Further validation of these findings in clinical studies will provide insights into the potential of glymphatic clearance as a therapeutic target as well as an early biomarker in HD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA