Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39149270

RESUMO

Fitting a hidden Markov Model (HMM) to neural data is a powerful method to segment a spatiotemporal stream of neural activity into sequences of discrete hidden states. Application of HMM has allowed to uncover hidden states and signatures of neural dynamics that seem relevant for sensory and cognitive processes. This has been accomplished especially in datasets comprising ensembles of simultaneously recorded cortical spike trains. However, the HMM analysis of spike data is involved and requires a careful handling of model selection. Two main issues are: (i) the cross-validated likelihood function typically increases with the number of hidden states; (ii) decoding the data with an HMM can lead to very rapid state switching due to fast oscillations in state probabilities. The first problem is related to the phenomenon of over-segmentation and leads to overfitting. The second problem is at odds with the empirical fact that hidden states in cortex tend to last from hundred of milliseconds to seconds. Here, we show that we can alleviate both problems by regularizing a Poisson-HMM during training so as to enforce large self-transition probabilities. We call this algorithm the 'sticky Poisson-HMM' (sPHMM). When used to-gether with the Bayesian Information Criterion for model selection, the sPHMM successfully eliminates rapid state switching, outperforming an alternative strategy based on an HMM with a large prior on the self-transition probabilities. The sPHMM also captures the ground truth in surrogate datasets built to resemble the statistical properties of the experimental data.

2.
PLoS Comput Biol ; 20(7): e1012220, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38950068

RESUMO

Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.


Assuntos
Potenciais de Ação , Modelos Neurológicos , Rede Nervosa , Plasticidade Neuronal , Neurônios , Sinapses , Plasticidade Neuronal/fisiologia , Rede Nervosa/fisiologia , Potenciais de Ação/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Córtex Cerebral/fisiologia , Biologia Computacional , Humanos , Simulação por Computador
3.
bioRxiv ; 2024 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-38106233

RESUMO

Evidence for metastable dynamics and its role in brain function is emerging at a fast pace and is changing our understanding of neural coding by putting an emphasis on hidden states of transient activity. Clustered networks of spiking neurons have enhanced synaptic connections among groups of neurons forming structures called cell assemblies; such networks are capable of producing metastable dynamics that is in agreement with many experimental results. However, it is unclear how a clustered network structure producing metastable dynamics may emerge from a fully local plasticity rule, i.e., a plasticity rule where each synapse has only access to the activity of the neurons it connects (as opposed to the activity of other neurons or other synapses). Here, we propose a local plasticity rule producing ongoing metastable dynamics in a deterministic, recurrent network of spiking neurons. The metastable dynamics co-exists with ongoing plasticity and is the consequence of a self-tuning mechanism that keeps the synaptic weights close to the instability line where memories are spontaneously reactivated. In turn, the synaptic structure is stable to ongoing dynamics and random perturbations, yet it remains sufficiently plastic to remap sensory representations to encode new sets of stimuli. Both the plasticity rule and the metastable dynamics scale well with network size, with synaptic stability increasing with the number of neurons. Overall, our results show that it is possible to generate metastable dynamics over meaningful hidden states using a simple but biologically plausible plasticity rule which co-exists with ongoing neural dynamics.

4.
iScience ; 26(4): 106295, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36950121

RESUMO

Sea urchins can detect light and move in relation to luminous stimuli despite lacking eyes. They presumably detect light through photoreceptor cells distributed on their body surface. However, there is currently no mechanistic explanation of how these animals can process light to detect visual stimuli and produce oriented movement. Here, we present a model of decentralized vision in echinoderms that includes all known processing stages, from photoreceptor cells to radial nerve neurons to neurons contained in the oral nerve ring encircling the mouth of the animals. In the model, light stimuli captured by photoreceptor cells produce neural activity in the radial nerve neurons. In turn, neural activity in the radial nerves is integrated in the oral nerve ring to produce a profile of neural activity reaching spatially across several ambulacra. This neural activity is readout to produce a model of movement. The model captures previously published data on the behavior of sea urchin Diadema africanum probed with a variety of physical stimuli. The specific pattern of neural connections used in the model makes testable predictions on the properties of single neurons and aggregate neural behavior in Diadema africanum and other echinoderms, offering a potential understanding of the mechanism of visual orientation in these animals.

5.
PLoS Comput Biol ; 19(2): e1010865, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36749734

RESUMO

The mouse gustatory cortex (GC) is involved in taste-guided decision-making in addition to sensory processing. Rodent GC exhibits metastable neural dynamics during ongoing and stimulus-evoked activity, but how these dynamics evolve in the context of a taste-based decision-making task remains unclear. Here we employ analytical and modeling approaches to i) extract metastable dynamics in ensemble spiking activity recorded from the GC of mice performing a perceptual decision-making task; ii) investigate the computational mechanisms underlying GC metastability in this task; and iii) establish a relationship between GC dynamics and behavioral performance. Our results show that activity in GC during perceptual decision-making is metastable and that this metastability may serve as a substrate for sequentially encoding sensory, abstract cue, and decision information over time. Perturbations of the model's metastable dynamics indicate that boosting inhibition in different coding epochs differentially impacts network performance, explaining a counterintuitive effect of GC optogenetic silencing on mouse behavior.


Assuntos
Córtex Cerebral , Córtex Insular , Ratos , Camundongos , Animais , Córtex Cerebral/fisiologia , Ratos Long-Evans , Percepção Gustatória/fisiologia , Paladar/fisiologia , Tomada de Decisões
6.
Adv Exp Med Biol ; 1359: 125-157, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35471538

RESUMO

Mean field theory is a device to analyze the collective behavior of a dynamical system comprising many interacting particles. The theory allows to reduce the behavior of the system to the properties of a handful of parameters. In neural circuits, these parameters are typically the firing rates of distinct, homogeneous subgroups of neurons. Knowledge of the firing rates under conditions of interest can reveal essential information on both the dynamics of neural circuits and the way they can subserve brain function. The goal of this chapter is to provide an elementary introduction to the mean field approach for populations of spiking neurons. We introduce the general idea in networks of binary neurons, starting from the most basic results and then generalizing to more relevant situations. This allows to derive the mean field equations in a simplified setting. We then derive the mean field equations for populations of integrate-and-fire neurons. An effort is made to derive the main equations of the theory using only elementary methods from calculus and probability theory. The chapter ends with a discussion of the assumptions of the theory and some of the consequences of violating those assumptions. This discussion includes an introduction to balanced and metastable networks and a brief catalogue of successful applications of the mean field approach to the study of neural circuits.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia
7.
Cell Rep ; 35(1): 108934, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33826896

RESUMO

Cortical activity related to erroneous behavior in discrimination or decision-making tasks is rarely analyzed, yet it can help clarify which computations are essential during a specific task. Here, we use a hidden Markov model (HMM) to perform a trial-by-trial analysis of the ensemble activity of dorsolateral prefrontal cortex (PFdl) neurons of rhesus monkeys performing a distance discrimination task. By segmenting the neural activity into sequences of metastable states, HMM allows us to uncover modulations of the neural dynamics related to internal computations. We find that metastable dynamics slow down during error trials, while state transitions at a pivotal point during the trial take longer in difficult correct trials. Both these phenomena occur during the decision interval, with errors occurring in both easy and difficult trials. Our results provide further support for the emerging role of metastable cortical dynamics in mediating complex cognitive functions and behavior.


Assuntos
Discriminação Psicológica , Percepção de Distância/fisiologia , Córtex Pré-Frontal/fisiologia , Análise e Desempenho de Tarefas , Animais , Macaca mulatta , Masculino , Cadeias de Markov , Neurônios/fisiologia
8.
Curr Opin Neurobiol ; 58: 37-45, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31326722

RESUMO

Metastable brain dynamics are characterized by abrupt, jump-like modulations so that the neural activity in single trials appears to unfold as a sequence of discrete, quasi-stationary 'states'. Evidence that cortical neural activity unfolds as a sequence of metastable states is accumulating at fast pace. Metastable activity occurs both in response to an external stimulus and during ongoing, self-generated activity. These spontaneous metastable states are increasingly found to subserve internal representations that are not locked to external triggers, including states of deliberations, attention and expectation. Moreover, decoding stimuli or decisions via metastable states can be carried out trial-by-trial. Focusing on metastability will allow us to shift our perspective on neural coding from traditional concepts based on trial-averaging to models based on dynamic ensemble representations. Recent theoretical work has started to characterize the mechanistic origin and potential roles of metastable representations. In this article we review recent findings on metastable activity, how it may arise in biologically realistic models, and its potential role for representing internal states as well as relevant task variables.


Assuntos
Encéfalo , Computadores
9.
Front Neurosci ; 12: 165, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615854

RESUMO

The ability to learn and follow abstract rules relies on intact prefrontal regions including the lateral prefrontal cortex (LPFC) and the orbitofrontal cortex (OFC). Here, we investigate the specific roles of these brain regions in learning rules that depend critically on the formation of abstract concepts as opposed to simpler input-output associations. To this aim, we tested monkeys with bilateral removals of either LPFC or OFC on a rapidly learned task requiring the formation of the abstract concept of same vs. different. While monkeys with OFC removals were significantly slower than controls at both acquiring and reversing the concept-based rule, monkeys with LPFC removals were not impaired in acquiring the task, but were significantly slower at rule reversal. Neither group was impaired in the acquisition or reversal of a delayed visual cue-outcome association task without a concept-based rule. These results suggest that OFC is essential for the implementation of a concept-based rule, whereas LPFC seems essential for its modification once established.

10.
Neuroimage ; 174: 35-43, 2018 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-29486321

RESUMO

Oxytocin (OT) is an endogenous neuropeptide that, while originally thought to promote trust, has more recently been found to be context-dependent. Here we extend experimental paradigms previously restricted to de novo decision-to-trust, to a more realistic environment in which social relationships evolve in response to iterative feedback over twenty interactions. In a randomized, double blind, placebo-controlled within-subject/crossover experiment of human adult males, we investigated the effects of a single dose of intranasal OT (40 IU) on Bayesian expectation updating and reinforcement learning within a social context, with associated brain circuit dynamics. Subjects participated in a neuroeconomic task (Iterative Trust Game) designed to probe iterative social learning while their brains were scanned using ultra-high field (7T) fMRI. We modeled each subject's behavior using Bayesian updating of belief-states ("willingness to trust") as well as canonical measures of reinforcement learning (learning rate, inverse temperature). Behavioral trajectories were then used as regressors within fMRI activation and connectivity analyses to identify corresponding brain network functionality affected by OT. Behaviorally, OT reduced feedback learning, without bias with respect to positive versus negative reward. Neurobiologically, reduced learning under OT was associated with muted communication between three key nodes within the reward circuit: the orbitofrontal cortex, amygdala, and lateral (limbic) habenula. Our data suggest that OT, rather than inspiring feelings of generosity, instead attenuates the brain's encoding of prediction error and therefore its ability to modulate pre-existing beliefs. This effect may underlie OT's putative role in promoting what has typically been reported as 'unjustified trust' in the face of information that suggests likely betrayal, while also resolving apparent contradictions with regard to OT's context-dependent behavioral effects.


Assuntos
Encéfalo/fisiologia , Relações Interpessoais , Ocitocina/fisiologia , Reforço Psicológico , Recompensa , Confiança , Administração Intranasal , Adulto , Mapeamento Encefálico , Humanos , Imageamento por Ressonância Magnética , Masculino , Vias Neurais/fisiologia , Ocitocina/administração & dosagem , Adulto Jovem
11.
Front Syst Neurosci ; 10: 11, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26924968

RESUMO

The activity of ensembles of simultaneously recorded neurons can be represented as a set of points in the space of firing rates. Even though the dimension of this space is equal to the ensemble size, neural activity can be effectively localized on smaller subspaces. The dimensionality of the neural space is an important determinant of the computational tasks supported by the neural activity. Here, we investigate the dimensionality of neural ensembles from the sensory cortex of alert rats during periods of ongoing (inter-trial) and stimulus-evoked activity. We find that dimensionality grows linearly with ensemble size, and grows significantly faster during ongoing activity compared to evoked activity. We explain these results using a spiking network model based on a clustered architecture. The model captures the difference in growth rate between ongoing and evoked activity and predicts a characteristic scaling with ensemble size that could be tested in high-density multi-electrode recordings. Moreover, we present a simple theory that predicts the existence of an upper bound on dimensionality. This upper bound is inversely proportional to the amount of pair-wise correlations and, compared to a homogeneous network without clusters, it is larger by a factor equal to the number of clusters. The empirical estimation of such bounds depends on the number and duration of trials and is well predicted by the theory. Together, these results provide a framework to analyze neural dimensionality in alert animals, its behavior under stimulus presentation, and its theoretical dependence on ensemble size, number of clusters, and correlations in spiking network models.

12.
J Neurosci ; 35(21): 8214-31, 2015 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-26019337

RESUMO

Single-trial analyses of ensemble activity in alert animals demonstrate that cortical circuits dynamics evolve through temporal sequences of metastable states. Metastability has been studied for its potential role in sensory coding, memory, and decision-making. Yet, very little is known about the network mechanisms responsible for its genesis. It is often assumed that the onset of state sequences is triggered by an external stimulus. Here we show that state sequences can be observed also in the absence of overt sensory stimulation. Analysis of multielectrode recordings from the gustatory cortex of alert rats revealed ongoing sequences of states, where single neurons spontaneously attain several firing rates across different states. This single-neuron multistability represents a challenge to existing spiking network models, where typically each neuron is at most bistable. We present a recurrent spiking network model that accounts for both the spontaneous generation of state sequences and the multistability in single-neuron firing rates. Each state results from the activation of neural clusters with potentiated intracluster connections, with the firing rate in each cluster depending on the number of active clusters. Simulations show that the model's ensemble activity hops among the different states, reproducing the ongoing dynamics observed in the data. When probed with external stimuli, the model predicts the quenching of single-neuron multistability into bistability and the reduction of trial-by-trial variability. Both predictions were confirmed in the data. Together, these results provide a theoretical framework that captures both ongoing and evoked network dynamics in a single mechanistic model.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Animais , Eletrodos Implantados , Feminino , Ratos , Ratos Long-Evans
13.
Front Psychol ; 5: 869, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25157236
14.
J Neurosci ; 33(48): 18966-78, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24285901

RESUMO

Most of the research on cortical processing of taste has focused on either the primary gustatory cortex (GC) or the orbitofrontal cortex (OFC). However, these are not the only areas involved in taste processing. Gustatory information can also reach another frontal region, the medial prefrontal cortex (mPFC), via direct projections from GC. mPFC has been studied extensively in relation to its role in controlling goal-directed action and reward-guided behaviors, yet very little is known about its involvement in taste coding. The experiments presented here address this important point and test whether neurons in mPFC can significantly process the physiochemical and hedonic dimensions of taste. Spiking responses to intraorally delivered tastants were recorded from rats implanted with bundles of electrodes in mPFC and GC. Analysis of single-neuron and ensemble activity revealed similarities and differences between the two areas. Neurons in mPFC can encode the chemosensory identity of gustatory stimuli. However, responses in mPFC are sparser, more narrowly tuned, and have a later onset than in GC. Although taste quality is more robustly represented in GC, taste palatability is coded equally well in the two areas. Additional analysis of responses in neurons processing the hedonic value of taste revealed differences between the two areas in temporal dynamics and sensitivities to palatability. These results add mPFC to the network of areas involved in processing gustatory stimuli and demonstrate significant differences in taste-coding between GC and mPFC.


Assuntos
Córtex Cerebral/fisiologia , Rede Nervosa/fisiologia , Córtex Pré-Frontal/fisiologia , Córtex Somatossensorial/fisiologia , Paladar/fisiologia , Algoritmos , Animais , Interpretação Estatística de Dados , Discriminação Psicológica/fisiologia , Fenômenos Eletrofisiológicos , Feminino , Preferências Alimentares/fisiologia , Neurônios/fisiologia , Ratos , Ratos Long-Evans , Recompensa , Estimulação Química
15.
J Neurophysiol ; 101(1): 437-47, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18987119

RESUMO

Motivation is usually inferred from the likelihood or the intensity with which behavior is carried out. It is sensitive to external factors (e.g., the identity, amount, and timing of a rewarding outcome) and internal factors (e.g., hunger or thirst). We trained macaque monkeys to perform a nonchoice instrumental task (a sequential red-green color discrimination) while manipulating two external factors: reward size and delay-to-reward. We also inferred the state of one internal factor, level of satiation, by monitoring the accumulated reward. A visual cue indicated the forthcoming reward size and delay-to-reward in each trial. The fraction of trials completed correctly by the monkeys increased linearly with reward size and was hyperbolically discounted by delay-to-reward duration, relations that are similar to those found in free operant and choice tasks. The fraction of correct trials also decreased progressively as a function of the satiation level. Similar (albeit noiser) relations were obtained for reaction times. The combined effect of reward size, delay-to-reward, and satiation level on the proportion of correct trials is well described as a multiplication of the effects of the single factors when each factor is examined alone. These results provide a quantitative account of the interaction of external and internal factors on instrumental behavior, and allow us to extend the concept of subjective value of a rewarding outcome, usually confined to external factors, to account also for slow changes in the internal drive of the subject.


Assuntos
Modelos Neurológicos , Motivação , Esquema de Reforço , Recompensa , Saciação/fisiologia , Algoritmos , Análise de Variância , Animais , Condicionamento Operante/fisiologia , Sinais (Psicologia) , Interpretação Estatística de Dados , Macaca mulatta , Estimulação Luminosa , Reforço Psicológico
16.
Biol Cybern ; 99(4-5): 303-18, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19011920

RESUMO

The response of a population of neurons to time-varying synaptic inputs can show a rich phenomenology, hardly predictable from the dynamical properties of the membrane's inherent time constants. For example, a network of neurons in a state of spontaneous activity can respond significantly more rapidly than each single neuron taken individually. Under the assumption that the statistics of the synaptic input is the same for a population of similarly behaving neurons (mean field approximation), it is possible to greatly simplify the study of neural circuits, both in the case in which the statistics of the input are stationary (reviewed in La Camera et al. in Biol Cybern, 2008) and in the case in which they are time varying and unevenly distributed over the dendritic tree. Here, we review theoretical and experimental results on the single-neuron properties that are relevant for the dynamical collective behavior of a population of neurons. We focus on the response of integrate-and-fire neurons and real cortical neurons to long-lasting, noisy, in vivo-like stationary inputs and show how the theory can predict the observed rhythmic activity of cultures of neurons. We then show how cortical neurons adapt on multiple time scales in response to input with stationary statistics in vitro. Next, we review how it is possible to study the general response properties of a neural circuit to time-varying inputs by estimating the response of single neurons to noisy sinusoidal currents. Finally, we address the dendrite-soma interactions in cortical neurons leading to gain modulation and spike bursts, and show how these effects can be captured by a two-compartment integrate-and-fire neuron. Most of the experimental results reviewed in this article have been successfully reproduced by simple integrate-and-fire model neurons.


Assuntos
Córtex Cerebral/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos , Redes Neurais de Computação
17.
Biol Cybern ; 99(4-5): 279-301, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18985378

RESUMO

The study of several aspects of the collective dynamics of interacting neurons can be highly simplified if one assumes that the statistics of the synaptic input is the same for a large population of similarly behaving neurons (mean field approach). In particular, under such an assumption, it is possible to determine and study all the equilibrium points of the network dynamics when the neuronal response to noisy, in vivo-like, synaptic currents is known. The response function can be computed analytically for simple integrate-and-fire neuron models and it can be measured directly in experiments in vitro. Here we review theoretical and experimental results about the neural response to noisy inputs with stationary statistics. These response functions are important to characterize the collective neural dynamics that are proposed to be the neural substrate of working memory, decision making and other cognitive functions. Applications to the case of time-varying inputs are reviewed in a companion paper (Giugliano et al. in Biol Cybern, 2008). We conclude that modified integrate-and-fire neuron models are good enough to reproduce faithfully many of the relevant dynamical aspects of the neuronal response measured in experiments on real neurons in vitro.


Assuntos
Córtex Cerebral/fisiologia , Modelos Neurológicos , Neurônios/fisiologia , Animais , Humanos
18.
PLoS Comput Biol ; 4(8): e1000131, 2008 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-18688266

RESUMO

It is often assumed that animals and people adjust their behavior to maximize reward acquisition. In visually cued reinforcement schedules, monkeys make errors in trials that are not immediately rewarded, despite having to repeat error trials. Here we show that error rates are typically smaller in trials equally distant from reward but belonging to longer schedules (referred to as "schedule length effect"). This violates the principles of reward maximization and invariance and cannot be predicted by the standard methods of Reinforcement Learning, such as the method of temporal differences. We develop a heuristic model that accounts for all of the properties of the behavior in the reinforcement schedule task but whose predictions are not different from those of the standard temporal difference model in choice tasks. In the modification of temporal difference learning introduced here, the effect of schedule length emerges spontaneously from the sensitivity to the immediately preceding trial. We also introduce a policy for general Markov Decision Processes, where the decision made at each node is conditioned on the motivation to perform an instrumental action, and show that the application of our model to the reinforcement schedule task and the choice task are special cases of this general theoretical framework. Within this framework, Reinforcement Learning can approach contextual learning with the mixture of empirical findings and principled assumptions that seem to coexist in the best descriptions of animal behavior. As examples, we discuss two phenomena observed in humans that often derive from the violation of the principle of invariance: "framing," wherein equivalent options are treated differently depending on the context in which they are presented, and the "sunk cost" effect, the greater tendency to continue an endeavor once an investment in money, effort, or time has been made. The schedule length effect might be a manifestation of these phenomena in monkeys.


Assuntos
Modelos Psicológicos , Motivação , Esquema de Reforço , Recompensa , Animais , Comportamento Animal , Comportamento de Escolha , Condicionamento Psicológico , Sinais (Psicologia) , Aprendizagem por Discriminação , Humanos , Cadeias de Markov , Redes Neurais de Computação , Satisfação Pessoal , Aprendizagem por Probabilidade
20.
J Neurophysiol ; 96(6): 3448-64, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16807345

RESUMO

Neural dynamic processes correlated over several time scales are found in vivo, in stimulus-evoked as well as spontaneous activity, and are thought to affect the way sensory stimulation is processed. Despite their potential computational consequences, a systematic description of the presence of multiple time scales in single cortical neurons is lacking. In this study, we injected fast spiking and pyramidal (PYR) neurons in vitro with long-lasting episodes of step-like and noisy, in-vivo-like current. Several processes shaped the time course of the instantaneous spike frequency, which could be reduced to a small number (1-4) of phenomenological mechanisms, either reducing (adapting) or increasing (facilitating) the neuron's firing rate over time. The different adaptation/facilitation processes cover a wide range of time scales, ranging from initial adaptation (<10 ms, PYR neurons only), to fast adaptation (<300 ms), early facilitation (0.5-1 s, PYR only), and slow (or late) adaptation (order of seconds). These processes are characterized by broad distributions of their magnitudes and time constants across cells, showing that multiple time scales are at play in cortical neurons, even in response to stationary stimuli and in the presence of input fluctuations. These processes might be part of a cascade of processes responsible for the power-law behavior of adaptation observed in several preparations, and may have far-reaching computational consequences that have been recently described.


Assuntos
Córtex Cerebral/fisiologia , Neurônios/fisiologia , Células Piramidais/fisiologia , Adaptação Fisiológica , Algoritmos , Animais , Córtex Cerebral/citologia , Estimulação Elétrica , Eletrofisiologia , Feminino , Técnicas In Vitro , Masculino , Modelos Neurológicos , Modelos Estatísticos , Técnicas de Patch-Clamp , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA