Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Microbiol Rep ; 16(2): e13258, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38589217

RESUMO

DNA methylation serves a variety of functions across all life domains. In this study, we investigated archaeal methylomics within a tripartite xylanolytic halophilic consortium. This consortium includes Haloferax lucertense SVX82, Halorhabdus sp. SVX81, and an ectosymbiotic Candidatus Nanohalococcus occultus SVXNc, a nano-sized archaeon from the DPANN superphylum. We utilized PacBio SMRT and Illumina cDNA sequencing to analyse samples from consortia of different compositions for methylomics and transcriptomics. Endogenous cTAG methylation, typical of Haloferax, was accompanied in this strain by methylation at four other motifs, including GDGcHC methylation, which is specific to the ectosymbiont. Our analysis of the distribution of methylated and unmethylated motifs suggests that autochthonous cTAG methylation may influence gene regulation. The frequency of GRAGAaG methylation increased in highly expressed genes, while CcTTG and GTCGaGG methylation could be linked to restriction-modification (RM) activity. Generally, the RM activity might have been reduced during the evolution of this archaeon to balance the protection of cells from intruders, the reduction of DNA damage due to self-restriction in stressful environments, and the benefits of DNA exchange under extreme conditions. Our methylomics, transcriptomics and complementary electron cryotomography (cryo-ET) data suggest that the nanohaloarchaeon exports its methyltransferase to methylate the Haloferax genome, unveiling a new aspect of the interaction between the symbiont and its host.


Assuntos
Archaea , Metilação de DNA , Archaea/genética , Perfilação da Expressão Gênica , Expressão Gênica , Metiltransferases/genética , DNA Arqueal/genética
2.
Microb Biotechnol ; 16(9): 1803-1822, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37317055

RESUMO

Climate change, desertification, salinisation of soils and the changing hydrology of the Earth are creating or modifying microbial habitats at all scales including the oceans, saline groundwaters and brine lakes. In environments that are saline or hypersaline, the biodegradation of recalcitrant plant and animal polysaccharides can be inhibited by salt-induced microbial stress and/or by limitation of the metabolic capabilities of halophilic microbes. We recently demonstrated that the chitinolytic haloarchaeon Halomicrobium can serve as the host for an ectosymbiont, nanohaloarchaeon 'Candidatus Nanohalobium constans'. Here, we consider whether nanohaloarchaea can benefit from the haloarchaea-mediated degradation of xylan, a major hemicellulose component of wood. Using samples of natural evaporitic brines and anthropogenic solar salterns, we describe genome-inferred trophic relations in two extremely halophilic xylan-degrading three-member consortia. We succeeded in genome assembly and closure for all members of both xylan-degrading cultures and elucidated the respective food chains within these consortia. We provide evidence that ectosymbiontic nanohaloarchaea is an active ecophysiological component of extremely halophilic xylan-degrading communities (although by proxy) in hypersaline environments. In each consortium, nanohaloarchaea occur as ectosymbionts of Haloferax, which in turn act as scavenger of oligosaccharides produced by xylan-hydrolysing Halorhabdus. We further obtained and characterised the nanohaloarchaea-host associations using microscopy, multi-omics and cultivation approaches. The current study also doubled culturable nanohaloarchaeal symbionts and demonstrated that these enigmatic nano-sized archaea can be readily isolated in binary co-cultures using an appropriate enrichment strategy. We discuss the implications of xylan degradation by halophiles in biotechnology and for the United Nation's Sustainable Development Goals.


Assuntos
Haloferax , Xilanos , Ecossistema
3.
Front Microbiol ; 14: 1182464, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37323909

RESUMO

Extremely halophilic representatives of the phylum Candidatus Nanohaloarchaeota (members of the DPANN superphyla) are obligately associated with extremely halophilic archaea of the phylum Halobacteriota (according to the GTDB taxonomy). Using culture-independent molecular techniques, their presence in various hypersaline ecosystems around the world has been confirmed over the past decade. However, the vast majority of nanohaloarchaea remain uncultivated, and thus their metabolic capabilities and ecophysiology are currently poorly understood. Using the (meta)genomic, transcriptomic, and DNA methylome platforms, the metabolism and functional prediction of the ecophysiology of two novel extremely halophilic symbiotic nanohaloarchaea (Ca. Nanohalococcus occultus and Ca. Nanohalovita haloferacivicina) stably cultivated in the laboratory as members of a xylose-degrading binary culture with a haloarchaeal host, Haloferax lucentense, was determined. Like all known DPANN superphylum nanoorganisms, these new sugar-fermenting nanohaloarchaea lack many fundamental biosynthetic repertoires, making them exclusively dependent on their respective host for survival. In addition, given the cultivability of the new nanohaloarchaea, we managed to discover many unique features in these new organisms that have never been observed in nano-sized archaea both within the phylum Ca. Nanohaloarchaeota and the entire superphylum DPANN. This includes the analysis of the expression of organism-specific non-coding regulatory (nc)RNAs (with an elucidation of their 2D-secondary structures) as well as profiling of DNA methylation. While some ncRNA molecules have been predicted with high confidence as RNAs of an archaeal signal recognition particle involved in delaying protein translation, others resemble the structure of ribosome-associated ncRNAs, although none belong to any known family. Moreover, the new nanohaloarchaea have very complex cellular defense mechanisms. In addition to the defense mechanism provided by the type II restriction-modification system, consisting of Dcm-like DNA methyltransferase and Mrr restriction endonuclease, Ca. Nanohalococcus encodes an active type I-D CRISPR/Cas system, containing 77 spacers divided into two loci. Despite their diminutive genomes and as part of their host interaction mechanism, the genomes of new nanohaloarchaea do encode giant surface proteins, and one of them (9,409 amino acids long) is the largest protein of any sequenced nanohaloarchaea and the largest protein ever discovered in cultivated archaea.

4.
Environ Microbiol ; 23(7): 3789-3808, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33538376

RESUMO

Archaea are environmentally ubiquitous on Earth, and their extremophilic and metabolically versatile phenotypes make them useful as model systems for astrobiology. Here, we reveal a new functional group of halo(natrono)archaea able to utilize alpha-d-glucans (amylopectin, amylose and glycogen), sugars, and glycerol as electron donors and carbon sources for sulfur respiration. They are facultative anaerobes enriched from hypersaline sediments with either amylopectin, glucose or glycerol as electron/carbon sources and elemental sulfur as the terminal electron acceptor. They include 10 strains of neutrophilic haloarchaea from circum pH-neutral lakes and one natronoarchaeon from soda-lake sediments. The neutrophilic isolates can grow by fermentation, although addition of S0 or dimethyl sulfoxide increased growth rate and biomass yield (with a concomitant decrease in H2 ). Natronoarchaeal isolate AArc-S grew only by respiration, either anaerobically with S0 or thiosulfate as the terminal electron acceptor, or aerobically. Through genome analysis of five representative strains, we detected the full set of enzymes required for the observed catabolic and respiratory phenotypes. These findings provide evidence that sulfur-respiring haloarchaea partake in biogeochemical sulfur cycling, linked to terminal anaerobic carbon mineralization in hypersaline anoxic habitats. We discuss the implications for life detection in analogue environments such as the polar subglacial brine-lakes of Mars.


Assuntos
Álcalis , Archaea , Carboidratos , Filogenia , Respiração , Enxofre
5.
Mar Drugs ; 18(12)2020 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-33255932

RESUMO

Gram-negative Antarctic bacteria adopt survival strategies to live and proliferate in an extremely cold environment. Unusual chemical modifications of the lipopolysaccharide (LPS) and the main component of their outer membrane are among the tricks adopted to allow the maintenance of an optimum membrane fluidity even at particularly low temperatures. In particular, the LPS' glycolipid moiety, the lipid A, typically undergoes several structural modifications comprising desaturation of the acyl chains, reduction in their length and increase in their branching. The investigation of the structure of the lipid A from cold-adapted bacteria is, therefore, crucial to understand the mechanisms underlying the cold adaptation phenomenon. Here we describe the structural elucidation of the highly heterogenous lipid A from three psychrophiles isolated from Terra Nova Bay, Antarctica. All the lipid A structures have been determined by merging data that was attained from the compositional analysis with information from a matrix-assisted laser desorption ionization (MALDI) time of flight (TOF) mass spectrometry (MS) and MS2 investigation. As lipid A is also involved in a structure-dependent elicitation of innate immune response in mammals, the structural characterization of lipid A from such extremophile bacteria is also of great interest from the perspective of drug synthesis and development inspired by natural sources.


Assuntos
Temperatura Baixa , Bactérias Aeróbias Gram-Negativas/metabolismo , Lipídeo A/química , Termotolerância , Regiões Antárticas , Gelo , Lipídeo A/isolamento & purificação , Estrutura Molecular , Água do Mar/microbiologia , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Microbiologia da Água
6.
Syst Appl Microbiol ; 43(5): 126107, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32847782

RESUMO

A novel anaerobic methylotrophic halophilic methanogen strain SLHTYROT was isolated from a deep hypersaline anoxic basin called "Tyro" located in the Eastern Mediterranean Sea. Cells of SLHTYROT were motile cocci. The strain SLHTYROT grew between 12 and 37 °C (optimum 30 °C), at pH between 6.5 and 8.2 (optimum pH 7.5) and salinity from 45 to 240 g L-1 NaCl (optimum 135 g L-1). Strain SLHTYROT was methylotrophic methanogen able to use methylated compounds (trimethylamine, dimethylamine, monomethylamine and methanol). Strain SLHTYROT was able to grow at in situ hydrostatic pressure and temperature conditions (35 MPa, 14 °C). Phylogenetic analysis based on 16S rRNA gene and mcrA gene sequences indicated that strain SLHTYROT was affiliated to genus Methanohalophilus within the order Methanosarcinales. It shared >99.16% of the 16S rRNA gene sequence similarity with strains of other Methanohalophilus species. Based on ANIb, AAI and dDDH measurements, and the physiological properties of the novel isolate, we propose that strain SLHTYROT should be classified as a representative of a novel species, for which the name Methanohalophilus profundi sp. nov. is proposed; the type strain is SLHTYROT (=DSM 108854 = JCM 32768 = UBOCC-M-3308).


Assuntos
Methanosarcinaceae/classificação , Methanosarcinaceae/isolamento & purificação , Água do Mar/microbiologia , Microbiologia da Água , Anaerobiose , Genes Arqueais , Concentração de Íons de Hidrogênio , Pressão Hidrostática , Mar Mediterrâneo , Metanol/metabolismo , Methanosarcinaceae/citologia , Methanosarcinaceae/fisiologia , Metilaminas/metabolismo , Filogenia , RNA Bacteriano/genética , RNA Ribossômico 16S/genética , Salinidade , Temperatura
7.
Proc Natl Acad Sci U S A ; 117(33): 20223-20234, 2020 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-32759215

RESUMO

Nano-sized archaeota, with their small genomes and limited metabolic capabilities, are known to associate with other microbes, thereby compensating for their own auxotrophies. These diminutive and yet ubiquitous organisms thrive in hypersaline habitats that they share with haloarchaea. Here, we reveal the genetic and physiological nature of a nanohaloarchaeon-haloarchaeon association, with both microbes obtained from a solar saltern and reproducibly cultivated together in vitro. The nanohaloarchaeon Candidatus Nanohalobium constans LC1Nh is an aerotolerant, sugar-fermenting anaerobe, lacking key anabolic machinery and respiratory complexes. The nanohaloarchaeon cells are found physically connected to the chitinolytic haloarchaeon Halomicrobium sp. LC1Hm. Our experiments revealed that this haloarchaeon can hydrolyze chitin outside the cell (to produce the monosaccharide N-acetylglucosamine), using this beta-glucan to obtain carbon and energy for growth. However, LC1Hm could not metabolize either glycogen or starch (both alpha-glucans) or other polysaccharides tested. Remarkably, the nanohaloarchaeon's ability to hydrolyze glycogen and starch to glucose enabled growth of Halomicrobium sp. LC1Hm in the absence of a chitin. These findings indicated that the nanohaloarchaeon-haloarchaeon association is both mutualistic and symbiotic; in this case, each microbe relies on its partner's ability to degrade different polysaccharides. This suggests, in turn, that other nano-sized archaeota may also be beneficial for their hosts. Given that availability of carbon substrates can vary both spatially and temporarily, the susceptibility of Halomicrobium to colonization by Ca Nanohalobium can be interpreted as a strategy to maximize the long-term fitness of the host.


Assuntos
Halobacteriaceae/fisiologia , Nanoarchaeota/fisiologia , Polissacarídeos/metabolismo , Simbiose/fisiologia , Proteínas Arqueais/genética , Proteínas Arqueais/metabolismo , Técnicas de Cocultura , Regulação da Expressão Gênica em Archaea , Genoma Arqueal , Genômica , Filogenia
8.
Sci Rep ; 9(1): 8031, 2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31123315

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

9.
Sci Rep ; 9(1): 1679, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30737448

RESUMO

Hydrated, magnesium-rich minerals and subglacial brines exist on the martian surface, so the habitability of high-Mg2+ environments on Earth has extraterrestrial (as well as terrestrial) implications. Here, we report the discovery of a MgCl2-dominated (4.72 M) brine lake on the floor of the Mediterranean Ridge that underlies a 3500-m water column, and name it Lake Hephaestus. Stable isotope analyses indicated that the Hephaestus brine is derived from interactions between ancient bishofite-enriched evaporites and subsurface fluids. Analyses of sediment pore waters indicated that the Hephaestus depression had contained the MgCl2 brine for a remarkably short period; only 700 years. Lake Hephaestus is, therefore, the youngest among currently known submarine athalassohaline brine lakes on Earth. Due to its biologically hostile properties (low water-activity and extreme chaotropicity), the Hephaestus brine is devoid of life. By contrast, the seawater-Hephaestus brine interface has been shown to act as refuge for extremely halophilic and magnesium-adapted stratified communities of microbes, even at MgCl2 concentrations that approach the water-activity limit for life (0.653).

10.
Front Microbiol ; 9: 2359, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30333814

RESUMO

The ubiquity of strictly anaerobic sulfur-respiring haloarchaea in hypersaline systems with circumneutral pH has shaken a traditional concept of this group as predominantly aerobic heterotrophs. Here, we demonstrated that this functional group of haloarchaea also has its representatives in hypersaline alkaline lakes. Sediments from various hypersaline soda lakes showed high activity of sulfur reduction only partially inhibited by antibiotics. Eight pure cultures of sulfur-reducing natronoarchaea were isolated from such sediments using formate and butyrate as electron donors and sulfur as an electron acceptor. Unlike strict anaerobic haloarchaea, these novel sulfur-reducing natronoarchaea are facultative anaerobes, whose metabolic capabilities were inferred from cultivation experiments and genomic/proteomic reconstruction. While sharing many physiological traits with strict anaerobic haloarchaea, following metabolic distinctions make these new organisms be successful in both anoxic and aerobic habitats: the recruiting of heme-copper quinol oxidases as terminal electron sink in aerobic respiratory chain and the utilization of formate, hydrogen or short-chain fatty acids as electron donors during anaerobic growth with elemental sulfur. Obtained results significantly advance the emerging concept of halo(natrono)archaea as important players in the anaerobic sulfur and carbon cycling in various salt-saturated habitats.

11.
Front Microbiol ; 9: 3, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29403458

RESUMO

Covering two-thirds of our planet, the global deep ocean plays a central role in supporting life on Earth. Among other processes, this biggest ecosystem buffers the rise of atmospheric CO2. Despite carbon sequestration in the deep ocean has been known for a long time, microbial activity in the meso- and bathypelagic realm via the "assimilation of bicarbonate in the dark" (ABD) has only recently been described in more details. Based on recent findings, this process seems primarily the result of chemosynthetic and anaplerotic reactions driven by different groups of deep-sea prokaryoplankton. We quantified bicarbonate assimilation in relation to total prokaryotic abundance, prokaryotic heterotrophic production and respiration in the meso- and bathypelagic Mediterranean Sea. The measured ABD values, ranging from 133 to 370 µg C m-3 d-1, were among the highest ones reported worldwide for similar depths, likely due to the elevated temperature of the deep Mediterranean Sea (13-14°C also at abyssal depths). Integrated over the dark water column (≥200 m depth), bicarbonate assimilation in the deep-sea ranged from 396 to 873 mg C m-2 d-1. This quantity of produced de novo organic carbon amounts to about 85-424% of the phytoplankton primary production and covers up to 62% of deep-sea prokaryotic total carbon demand. Hence, the ABD process in the meso- and bathypelagic Mediterranean Sea might substantially contribute to the inorganic and organic pool and significantly sustain the deep-sea microbial food web. To elucidate the ABD key-players, we established three actively nitrifying and CO2-fixing prokaryotic enrichments. Consortia were characterized by the co-occurrence of chemolithoautotrophic Thaumarchaeota and chemoheterotrophic proteobacteria. One of the enrichments, originated from Ionian bathypelagic waters (3,000 m depth) and supplemented with low concentrations of ammonia, was dominated by the Thaumarchaeota "low-ammonia-concentration" deep-sea ecotype, an enigmatic and ecologically important group of organisms, uncultured until this study.

12.
Genome Announc ; 6(3)2018 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-29348351

RESUMO

We report here the complete genome sequence (2.08 Mb) of Methanohalophilus portucalensis strain FDF-1T, a halophilic methylotrophic methanogen isolated from the sediment of a saltern in Figeria da Foz, Portugal. The average nucleotide identity and DNA-DNA hybridization analyses show that Methanohalophilus mahii, M. halophilus, and M. portucalensis are three different species within the Methanosarcinaceae family.

13.
PLoS One ; 13(1): e0190710, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29300784

RESUMO

The geological, biological and geochemical features of a particular field of hydrothermal vents, discovered in the Panarea Volcanic Complex during a research survey carried out in 2015, are described for the first time. The site, located at 70-80 m depth off the South-western coast of the islet of Basiluzzo, was named Smoking Land for the presence of a large number of wide and high active chimneys and was characterized in terms of dissolved benthic fluxes, associated macrofauna and megafauna communities and preliminary mineralogy and geochemistry of chimney structures. On the whole field, a total of 39 chimneys, different in size and shape, were closely observed and described; 14 of them showed emission of low temperature hydrothermal fluids of marine origin characterized by acidified chemical conditions. The CTD and benthic chamber measurements highlighted that the Smoking Land is able to form a sea water bottom layer characterized by variable acidity and high DIC and trace elements concentrations; these characteristics weaken moving away from the chimney mouths. The SEM-EDS analysis of the collected solid samples revealed a chimney structure principally composed by amorphous and low crystalline Fe-oxyhydroxides of hydrothermal origins. The ROV explorations revealed a wide coverage of red algae (Peyssonnelia spp.) colonized by the green algae Flabiella petiolata and by suspension feeders, mainly sponges, but also bryozoans, and tubicolous polychaetes. Although novent-exclusive species were identified, the benthic communities found in association to the chimneys included more taxa than those observed in the surrounding no-vent rocky areas. These first findings evidence a submarine dynamic habitat where geological, chemical and biological processes are intimately connected, making the Smoking Land an important site in terms of marine heritage that should be safeguarded and protected.


Assuntos
Fontes Hidrotermais , Oceanos e Mares , Animais , Briozoários , Clorófitas , Conservação dos Recursos Naturais , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Poríferos , Rodófitas , Difração de Raios X
14.
Nat Commun ; 8(1): 60, 2017 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-28680072

RESUMO

Intriguing, yet uncultured 'ARMAN'-like archaea are metabolically dependent on other members of the microbial community. It remains uncertain though which hosts they rely upon, and, because of the lack of complete genomes, to what extent. Here, we report the co-culturing of ARMAN-2-related organism, Mia14, with Cuniculiplasma divulgatum PM4 during the isolation of this strain from acidic streamer in Parys Mountain (Isle of Anglesey, UK). Mia14 is highly enriched in the binary culture (ca. 10% genomic reads) and its ungapped 0.95 Mbp genome points at severe voids in central metabolic pathways, indicating dependence on the host, C. divulgatum PM4. Analysis of C. divulgatum isolates from different sites and shotgun sequence data of Parys Mountain samples suggests an extensive genetic exchange between Mia14 and hosts in situ. Within the subset of organisms with high-quality genomic assemblies representing the 'DPANN' superphylum, the Mia14 lineage has had the largest gene flux, with dozens of genes gained that are implicated in the host interaction.In the absence of complete genomes, the metabolic capabilities of uncultured ARMAN-like archaea have been uncertain. Here, Golyshina et al. apply an enrichment culture technique and find that the ungapped genome of the ARMAN-like archaeon Mia14 has lost key metabolic pathways, suggesting dependence on the host archaeon Cuniculiplasma divulgatum.


Assuntos
Archaea/classificação , Archaea/fisiologia , Archaea/genética , Regulação da Expressão Gênica em Archaea , Variação Genética , Genoma Arqueal , Microscopia de Fluorescência , Filogenia , RNA Arqueal/genética , RNA Ribossômico 16S/genética , Especificidade da Espécie
15.
Genome Announc ; 5(7)2017 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-28209822

RESUMO

The complete genome sequence of Methanohalophilus halophilus DSM 3094T, a member of the Methanosarcinaceae family and the Methanosarcianales order, consists of 2,022,959 bp in one contig and contains 2,137 predicted genes. The genome is consistent with a halophilic methylotrophic anaerobic lifestyle, including the methylotrophic and CO2-H2 methanogensis pathways.

16.
ISME J ; 11(5): 1245-1260, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28106880

RESUMO

Hypersaline anoxic habitats harbour numerous novel uncultured archaea whose metabolic and ecological roles remain to be elucidated. Until recently, it was believed that energy generation via dissimilatory reduction of sulfur compounds is not functional at salt saturation conditions. Recent discovery of the strictly anaerobic acetotrophic Halanaeroarchaeum compels to change both this assumption and the traditional view on haloarchaea as aerobic heterotrophs. Here we report on isolation and characterization of a novel group of strictly anaerobic lithoheterotrophic haloarchaea, which we propose to classify as a new genus Halodesulfurarchaeum. Members of this previously unknown physiological group are capable of utilising formate or hydrogen as electron donors and elemental sulfur, thiosulfate or dimethylsulfoxide as electron acceptors. Using genome-wide proteomic analysis we have detected the full set of enzymes required for anaerobic respiration and analysed their substrate-specific expression. Such advanced metabolic plasticity and type of respiration, never seen before in haloarchaea, empower the wide distribution of Halodesulfurarchaeum in hypersaline inland lakes, solar salterns, lagoons and deep submarine anoxic brines. The discovery of this novel functional group of sulfur-respiring haloarchaea strengthens the evidence of their possible role in biogeochemical sulfur cycling linked to the terminal anaerobic carbon mineralisation in so far overlooked hypersaline anoxic habitats.


Assuntos
Ecossistema , Halobacteriales/classificação , Salinidade , Anaerobiose , Halobacteriales/genética , Halobacteriales/isolamento & purificação , Halobacteriales/metabolismo , Processos Heterotróficos , Filogenia , Proteômica , Enxofre/metabolismo
17.
Stand Genomic Sci ; 11: 35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27182430

RESUMO

Strain M27-SA2 was isolated from the deep-sea salt-saturated anoxic lake Medee, which represents one of the most hostile extreme environments on our planet. On the basis of physiological studies and phylogenetic positioning this extremely halophilic euryarchaeon belongs to a novel genus 'Halanaeroarchaeum' within the family Halobacteriaceae. All members of this genus cultivated so far are strict anaerobes using acetate as the sole carbon and energy source and elemental sulfur as electron acceptor. Here we report the complete genome sequence of the strain M27-SA2 which is composed of a 2,129,244-bp chromosome and a 124,256-bp plasmid. This is the second complete genome sequence within the genus Halanaeroarchaeum. We demonstrate that genome of 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors complete metabolic pathways for acetate and sulfur catabolism and for de novo biosynthesis of 19 amino acids. The genomic analysis also reveals that 'Halanaeroarchaeum sulfurireducens' M27-SA2 harbors two prophage loci and one CRISPR locus, highly similar to that of Kulunda Steppe (Altai, Russia) isolate 'H. sulfurireducens' HSR2(T). The discovery of sulfur-respiring acetate-utilizing haloarchaeon in deep-sea hypersaline anoxic lakes has certain significance for understanding the biogeochemical functioning of these harsh ecosystems, which are incompatible with life for common organisms. Moreover, isolations of Halanaeroarchaeum members from geographically distant salt-saturated sites of different origin suggest a high degree of evolutionary success in their adaptation to this type of extreme biotopes around the world.

18.
ISME J ; 10(1): 240-52, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25978546

RESUMO

Archaea domain is comprised of many versatile taxa that often colonize extreme habitats. Here, we report the discovery of strictly anaerobic extremely halophilic euryarchaeon, capable of obtaining energy by dissimilatory reduction of elemental sulfur using acetate as the only electron donor and forming sulfide and CO2 as the only products. This type of respiration has never been observed in hypersaline anoxic habitats and is the first example of such metabolic capability in the entire Archaea domain. We isolated and cultivated these unusual organisms, selecting one representative strain, HSR2, for detailed characterization. Our studies including physiological tests, genome sequencing, gene expression, metabolomics and [(14)C]-bicarbonate assimilation assays revealed that HSR2 oxidized acetate completely via the tricarboxylic acid cycle. Anabolic assimilation of acetate occurred via activated glyoxylate bypass and anaplerotic carboxylation. HSR2 possessed sulfurtransferase and an array of membrane-bound polysulfide reductase genes, all of which were expressed during the growth. Our findings suggest the biogeochemical contribution of haloarchaea in hypersaline anoxic environments must be reconsidered.


Assuntos
Acetatos/metabolismo , Archaea/metabolismo , Enxofre/metabolismo , Anaerobiose , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Proteínas Arqueais/metabolismo , Oxirredução , Oxirredutases/metabolismo , Sulfetos/metabolismo
19.
Environ Microbiol Rep ; 7(3): 450-9, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25682761

RESUMO

Dark ocean microbial communities are actively involved in chemoautotrophic and anaplerotic fixation of bicarbonate. Thus, aphotic pelagic realm of the ocean might represent a significant sink of CO2 and source of primary production. However, the estimated metabolic activities in the dark ocean are fraught with uncertainties. Typically, deep-sea samples are recovered to the sea surface for downstream processing on deck. Shifts in ambient settings, associated with such treatments, can likely change the metabolic activity and community structure of deep-sea adapted autochthonous microbial populations. To estimate influence of recovery and short-term handling of deep-sea samples, we monitored the succession of bathypelagic microbial community during its 3 days long on deck incubation. We demonstrated that at the end of exposition, the deep-sea archaeal population decreased threefold, whereas the bacterial fraction doubled in size. As revealed by phylogenetic analyses of amoA gene transcripts, dominance of the active ammonium-oxidizing bathypelagic Thaumarchaeota groups shifted over time very fast. These findings demonstrated the simultaneous existence of various 'deep-sea ecotypes', differentially reacting to the sampling and downstream handling. Our study supports the hypothesis that metabolically active members of meso- and bathypelagic Thaumarchaeota possess the habitat-specific distribution, metabolic complexity and genetic divergence at subpopulation level.


Assuntos
Archaea/classificação , Archaea/isolamento & purificação , Biota , Descompressão , Água do Mar/microbiologia , Adaptação Biológica , Archaea/fisiologia
20.
Environ Microbiol ; 17(2): 364-82, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25622758

RESUMO

Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it 'Lake Kryos' after a nearby depression. This lake is filled with magnesium chloride (MgCl2 )-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2 -rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater-Kryos brine interface and managed to recover mRNA from the 2.27-3.03 M MgCl2 layer (equivalent to 0.747-0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related to Desulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27-3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.


Assuntos
Archaea/genética , Bactérias/genética , Lagos/microbiologia , Consórcios Microbianos/fisiologia , Água do Mar/microbiologia , Archaea/classificação , Archaea/metabolismo , Bactérias/classificação , Bactérias/metabolismo , Mar Mediterrâneo , Filogenia , RNA Mensageiro/genética , RNA Ribossômico 16S/genética , Salinidade , Sais/análise , Cloreto de Sódio/análise , Microbiologia da Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...