Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
F S Sci ; 4(4): 294-301, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37739342

RESUMO

OBJECTIVE: To characterize the growth factor midkine (MDK) in the human ovary to determine whether MDK is produced locally within the ovary, examine whether different ovarian cell types are more likely to produce MDK, and determine whether there are any stage-specific variations during follicle growth. Previous studies have revealed that MDK potentially affects human follicle growth and oocyte maturation. Proteomic analyses in follicular fluid (FF) have identified MDK to functionally cluster together and follow a similar expression profile to that of well-known proteins involved in ovarian follicle development. Midkine has not yet been characterized in the human ovary. DESIGN: Descriptive study. SETTING: University Hospital. PATIENTS: The study included samples from 121 patients: 71 patients (aged 17-37 years) who underwent ovarian tissue cryopreservation provided granulosa cells (GC), cumulus cells, ovarian cortex, medulla tissue, and FF from small antral follicles (SAF); and 50 patients (aged 20-35 years) receiving in vitro fertilization treatment provided FF from preovulatory follicles before and after induction of final follicle maturation. INTERVENTIONS: None. MAIN OUTCOME MEASURES: MDK relative gene expression was quantified using a real-time quantitative polymerase chain reaction in cumulus cells, GC, and medulla tissue. Additionally, immunostaining and western blotting assays were used to detect MDK protein in the ovarian cortex, which contains preantral follicles, SAF, and medulla tissue. Furthermore, enzyme-linked immunosorbent assay analyses were performed to measure the concentration of MDK in FF aspirated from SAF and preovulatory follicles both before and 36 hours after inducing the final maturation of follicles. RESULTS: Immunostaining and reverse transcription-quantitative polymerase chain reaction revealed a more prominent expression of MDK in GC compared with other ovarian cell types. Intrafollicular MDK concentration was significantly higher in SAF compared with preovulatory follicles. In addition, different molecular weight species of MDK were detected using western blotting in various ovarian sample types: GC and FF samples presented primarily one band of approximately 15 kDa and an additional band of approximately 13 kDa, although other bands with higher molecular weight (between 30 and 38 kDa) were detected in medulla tissue. CONCLUSIONS: This is the first time that MDK has been immunolocalized in human ovarian cells at the protein level and that potentially different MDK variants have been detected in human FF, GC, and ovarian medulla tissue. Future studies are needed to sequence and identify the different potential MDK variants found to determine their functional importance for ovary and oocyte competence.


Assuntos
Ovário , Proteômica , Feminino , Humanos , Líquido Folicular/metabolismo , Midkina/metabolismo , Folículo Ovariano/metabolismo
2.
Fertil Steril ; 119(4): 550-559, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36702341

RESUMO

In several mammalian species, oocytes from small antral follicles after in vitro maturation (IVM) are successfully used for procreation. Humans are the exception, mainly because of limited access to immature oocytes and because oocyte maturation is uniquely regulated in women. With the introduction of cryopreservation of the ovarian cortex for fertility preservation, immature oocytes from small antral follicles in the medulla are now available for developing IVM on the basis of actual human studies. This review presents recent findings in favor of developing human IVM, including the oocyte diameter, follicle size from which the immature oocytes are collected, necessary level of follicle-stimulating hormone and luteinizing hormone to accelerate IVM, and secretion of factors from the cumulus-oocyte complex that affect the way oocyte maturation takes place. Furthermore, on the basis of studies in human granulosa cells and follicle fluid collected during the final maturation of follicles in vivo, a number of signal transduction pathways and hormone levels active during physiological conditions have been identified, providing new candidates and ways to improve the current IVM platform. Furthermore, it is suggested that the small droplet of culture medium in which IVM is performed mimics the hormonal milieu within a follicle created by the somatic cells and oocyte in vivo and may be used to advance oocyte nuclear and cytoplasmic maturation. Collectively, we envision that a continued research effort will develop a human IVM platform equally effective as for other mammalian species.


Assuntos
Preservação da Fertilidade , Animais , Feminino , Humanos , Oócitos/fisiologia , Folículo Ovariano , Oogênese , Criopreservação , Técnicas de Maturação in Vitro de Oócitos , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...