Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 8(1): 14855, 2018 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-30291283

RESUMO

The genetic link between magmas and ore deposit formation is well documented by studies of fossil hydrothermal systems associated with magmatic intrusions at depth. However, the role of explosive volcanic processes as active agents of mineralization remains unexplored owing to the fact that metals and volatiles are released into the atmosphere during the eruption of arc volcanoes. Here, we draw on observations of the uniquely preserved El Laco iron deposit in the Central Andes to shed new light on the metallogenic role of explosive volcanism that operates on a global scale. The massive magnetite (Fe3O4) ore bodies at El Laco have surface structures remarkably similar to basaltic lava flows, stimulating controversy about their origin. A long-standing debate has endured because all proposed models were constructed based exclusively on samples collected from surface outcrops representing the uppermost and most altered portion of the deposit. We overcome this sampling bias by studying samples retrieved from several drill cores and surface outcrops. Our results reveal complex lithological, textural and geochemical variations characterized by magmatic-like features and, most notably, a systematic increase in titanium concentration of magnetite with depth that account for an evolving system transitioning from purely magmatic to magmatic-hydrothermal conditions. We conclude that El Laco, and similar deposits worldwide, formed by a synergistic combination of common magmatic processes enhanced during the evolution of caldera-related explosive volcanic systems.

2.
Phys Chem Chem Phys ; 18(30): 20160-7, 2016 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-27157087

RESUMO

We present a study of the reactions of the meteoritic mineral schreibersite (Fe,Ni)3P, focusing primarily on surface chemistry and prebiotic phosphorylation. In this work, a synthetic analogue of the mineral was synthesized by mixing stoichiometric proportions of elemental iron, nickel and phosphorus and heating in a tube furnace at 820 °C for approximately 235 hours under argon or under vacuum, a modification of the method of Skála and Drábek (2002). Once synthesized, the schreibersite was characterized to confirm the identity of the product as well as to elucidate the oxidation processes affecting the surface. In addition to characterization of the solid product, this schreibersite was reacted with water or with organic solutes in a choline chloride-urea deep eutectic mixture, to constrain potential prebiotic products. Major inorganic solutes produced by reaction of water include orthophosphate, phosphite, pyrophosphate and hypophosphate consistent with prior work on Fe3P corrosion. Additionally, schreibersite corrodes in water and dries down to form a deep eutectic solution, generating phosphorylated products, in this case phosphocholine, using this synthesized schreibersite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...