Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anal Chem ; 92(5): 4053-4064, 2020 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-32045217

RESUMO

Surface-enhanced Raman scattering (SERS) is a powerful and sensitive technique for the detection of fingerprint signals of molecules and for the investigation of a series of surface chemical reactions. Many studies introduced quantitative applications of SERS in various fields, and several SERS methods have been implemented for each specific application, ranging in performance characteristics, analytes used, instruments, and analytical matrices. In general, very few methods have been validated according to international guidelines. As a consequence, the application of SERS in highly regulated environments is still considered risky, and the perception of a poorly reproducible and insufficiently robust analytical technique has persistently retarded its routine implementation. Collaborative trials are a type of interlaboratory study (ILS) frequently performed to ascertain the quality of a single analytical method. The idea of an ILS of quantification with SERS arose within the framework of Working Group 1 (WG1) of the EU COST Action BM1401 Raman4Clinics in an effort to overcome the problematic perception of quantitative SERS methods. Here, we report the first interlaboratory SERS study ever conducted, involving 15 laboratories and 44 researchers. In this study, we tried to define a methodology to assess the reproducibility and trueness of a quantitative SERS method and to compare different methods. In our opinion, this is a first important step toward a "standardization" process of SERS protocols, not proposed by a single laboratory but by a larger community.

2.
Front Chem ; 7: 275, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31069219

RESUMO

In this contribution the sorption of water vapor in Poly(L-lactic acid) (PLLA) was studied by time-resolved FTIR spectroscopy. The collected FTIR data were analyzed by complementary approaches such as difference spectroscopy, two-dimensional correlation spectroscopy (2D-COS), and least-squares curve-fitting analysis which provided information about the overall diffusivity, the nature of the molecular interactions among the polymer and the penetrant and the dynamics of the various molecular species. The diffusion coefficient were evaluated as a function of vapor activity and were found in good agreement with previously reported values. The system showed a Fickian behavior with diffusivity increasing with penetrant concentration. Two distinct water species (first-shell and second-shell layers) were detected and quantified by coupling FTIR and gravimetric measurements.

3.
Artigo em Inglês | MEDLINE | ID: mdl-30959345

RESUMO

A composite system made of poly(l-lactic acid) (PLLA) and graphene nanoplatelets (GNP) was investigated by Raman and FTIR spectroscopy. Two compositions were prepared and characterized in comparison to the pristine polymer: they contained, respectively, 0.25 and 0.75 wt% of the nanofiller. The study was focused on the morphological properties of the system, and, in particular, on the level of dispersion and the homogeneity obtainable with the adopted preparation protocol. Furthermore, the possible molecular interactions taking place between the nanofiller and the polymer matrix were considered. Both the above issues were investigated by confocal Raman spectroscopy, with the aid of first-principle calculations to strengthen the spectral interpretation. Finally, the effect of the nanofiller on water diffusion was investigated by time-resolved FTIR spectroscopy, which provided accurate equilibrium and kinetic data, as well as molecular level information on the penetrant-to-substrate interactions. It was found that, for a 0.25 wt% composition, the adopted preparation protocol allowed us to achieve a dispersion at the level of single nanoplatelets, while for a 0.75 wt% composition, the GNP's aggregate into a co-continuous phase. PLLA/GNP interactions were detected by Raman spectroscopy, producing a detectable perturbation of the PLLA conformational equilibrium. Both the diffusivities and the equilibrium water uptake were found to decrease significantly by increasing the filler content.

4.
Membranes (Basel) ; 9(2)2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30717234

RESUMO

In this paper, the sorption thermodynamics of low-molecular-weight penetrants in a glassy polyetherimide, endowed with specific interactions, is addressed by combining an experimental approach based on vibrational spectroscopy with thermodynamics modeling. This modeling approach is based on the extension of equilibrium theories to the out-of-equilibrium glassy state. Specific interactions are accounted for in the framework of a compressible lattice fluid theory. In particular, the sorption of carbon dioxide, water, and methanol is illustrated, exploiting the wealth of information gathered at a molecular level from Fourier-transform infrared (FTIR) spectroscopy to tailor thermodynamics modeling. The investigated penetrants display a different interacting characteristic with respect to the polymer substrate, which reflects itself in the sorption thermodynamics. For the specific case of water, the outcomes from molecular dynamics simulations are compared with the results of the present analysis.

5.
ACS Omega ; 3(9): 11592-11607, 2018 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31459258

RESUMO

In the present article, the infrared spectrum of polybenzimidazole (PBI) in the dry and hydrate forms has been studied both experimentally and theoretically to improve the interpretation of its complex features, especially in the ν(NH)/ν(OH) range, which is extensively affected by sorbed water and temperature. Time-resolved Fourier-transform infrared spectroscopy measurements were performed to monitor H2O sorption, whereas the temperature behavior was investigated by in situ measurements in the 100-450 °C range. Density functional theory calculations on simplified models of dry and hydrated PBI showed good agreement with experimental results and allowed a reliable interpretation of the observed effects. The combined experimental/computational analysis provided relevant structural information which suggested the possibility of modifying the diffusion properties of PBI and motivated further experimental activities.

6.
J Phys Chem B ; 121(14): 3162-3176, 2017 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-28335602

RESUMO

Hydrogen bonding (HB) interactions play a major role in determining the behavior of macromolecular systems absorbing water. In fact, functional and structural properties of polymer-water mixtures are affected by the amount and type of these interactions. This contribution aims at a molecular level understanding of the interactional scenario for the technologically relevant case of the poly(ether imide)-water system. The problem has been tackled by combining different experimental and theoretical approaches which, taken together, provide a comprehensive physical picture. Relevant experimental data were gathered by in situ FTIR spectroscopy, while molecular dynamics (MD) and statistical thermodynamics approaches were used as modeling theoretical tools. It was found that, among the possible configurations, some are strongly prevailing. In particular, water molecules preferentially establish water bridges with two carbonyl groups of the same PEI repeating unit. Water self-interactions were also detected, giving rise to a "second shell" species in the prevalent form of dimers. The population of the different water species was evaluated spectroscopically, and a remarkable agreement with theoretical predictions was found.

7.
Front Chem ; 2: 2, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24809042

RESUMO

In this contribution the diffusion of methanol in a commercial polyimide (PMDA-ODA) is studied by coupling gravimetric measurements with in-situ, time-resolved FTIR spectroscopy. The spectroscopic data have been treated with two complementary techniques, i.e., difference spectroscopy (DS) and least-squares curve fitting (LSCF). These approaches provided information about the overall diffusivity, the nature of the molecular interactions among the system components and the dynamics of the various molecular species. Additional spectroscopic measurements on thin film samples (about 2 µm) allowed us to identify the interaction site on the polymer backbone and to propose likely structures for the H-bonding aggregates. Molar absorptivity values from a previous literature report allowed us to estimate the population of first-shell and second-shell layers of methanol in the polymer matrix. In terms of diffusion kinetics, the gravimetric and spectroscopic estimates of the diffusion coefficients were found to be in good agreement with each other and with previous literature reports. A Fickian behavior was observed throughout, with diffusivity values markedly affected by the total concentration of sorbed methanol.

8.
Front Chem ; 2: 25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24860802

RESUMO

Sorption thermodynamics of water in two glassy polymers, polyetherimide (PEI) and polyetheretherketone (PEEK), is investigated by coupling gravimetry and on line FTIR spectroscopy in order to gather information on the total amount of sorbed water as well as on the different species of water molecules absorbed within the polymers, addressing the issue of cross- and self-interactions occurring in the polymer/water systems. Water sorption isotherms have been determined at temperatures ranging from 30 to 70°C while FTIR spectroscopy has been performed only at 30°C. The experimental analysis provided information on the groups present on the polymer backbones involved in hydrogen bonding interactions with absorbed water molecules. Moreover, it also supplied qualitative indications about the different "populations" of water molecules present within the PEEK and a quantitative assessment of these "populations" in the case of PEI. The results of the experimental analysis have been interpreted using an equation of state theory based on a compressible lattice fluid model for the Gibbs energy of the polymer-water mixture, developed by extending to the case of out of equilibrium glassy polymers a previous model intended for equilibrium rubbery polymers. The model accounts for the non-equilibrium nature of glassy polymers as well as for mean field and for hydrogen bonding interactions, providing a satisfactory quantitative interpretation of the experimental data.

9.
Int J Pharm ; 452(1-2): 283-91, 2013 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-23707963

RESUMO

Inspired by the multiple roles cyclodextrins can play in polymeric systems, here we engineered poly(ethylene oxide) (PEO) films with (2-hydroxypropyl)-ß-cyclodextrin (CD) as multipurpose ingredient. To shed light on the potential of CD in formulating PEO buccal films for the delivery of poorly water-soluble drugs, we preliminarily assessed thermal and mechanical properties as well as wettability of films prepared at different PEO/CD ratios. PEO/CD platform containing 54% by weight of CD was chosen as the optimized composition since it matched acceptable mechanical properties, in terms of tensile strength and elasticity, with a good wettability. The platform was tested as buccal delivery system for triamcinolone acetonide (TrA), a lipophilic synthetic corticosteroid sparely water soluble. Confocal Raman imaging clearly showed that CD was homogeneously (i.e. molecularly) dispersed in PEO. Nevertheless, homogenous drug distribution in the film without TrA crystallization occurred only in the presence of CD. Finally, CD-containing PEO film placed in simulated buccal fluids provided a useful speed-up of TrA release rate while showing slower dissolution as compared to PEO film. These results, as well as compliance with quality specifications of pharmaceutical manufacturing products, strongly support the soundness of the strategy and prompt toward further applications of PEO/CD films in buccal drug delivery.


Assuntos
Sistemas de Liberação de Medicamentos , Excipientes/química , Glucocorticoides/química , Polietilenoglicóis/química , Triancinolona Acetonida/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Administração Bucal , Módulo de Elasticidade , Saliva/química , Estresse Mecânico , Resistência à Tração
10.
Carbohydr Polym ; 90(3): 1288-98, 2012 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-22939343

RESUMO

The molecular foundations of the use of (2-hydroxypropyl)-ß-cyclodextrin (HPßCD) as solubility promoter of triamcinolone acetonide (TrA), a corticosteroid with very low aqueous solubility, was investigated by a multidisciplinary spectroscopic and computational approach. Aqueous solutions of TrA and HPßCD were investigated by UV and NMR spectroscopies. The association constant was determined by phase solubility diagrams and by the Foster-Fyfe method whereas the nature of the drug/cyclodextrin aggregates was probed by using the NMR DOSY technique. ROE measurements in solution led to stereochemical information regarding the nature of inclusion processes. TrA/HPßCD powders were prepared and investigated by Raman spectroscopy supported by computational methods. A molecular interaction of the hydroxyacyl chain with cyclodextrin, not identified in solution, was detected. Raman imaging experiments confirmed the attainment of a molecularly homogeneous system when the TrA/HPßCD molar ratio was 1:7 whereas TrA crystallized for mixtures richer in TrA (1:3.5) forming domains with size in the range of 10-15µm. We demonstrate that the combined use of several spectroscopical techniques with specific responsivities allows a detailed depiction of drug/cyclodextrin interaction useful in the development of novel pharmaceutical formulation.


Assuntos
Modelos Moleculares , Triancinolona Acetonida/química , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina , Configuração de Carboidratos , Espectroscopia de Ressonância Magnética , Solubilidade , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...