Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; : e1800957, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882270

RESUMO

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

2.
Nanoscale ; 9(38): 14414-14422, 2017 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-28920125

RESUMO

Current-voltage characteristics of oxide-based resistive switching memories often show a pronounced asymmetry with respect to the voltage polarity in the high resistive state (HRS), where the HRS after the RESET is more conducting than the one before the SET. Here, we report that most of this HRS asymmetry is a volatile effect as the HRS obtained from a read operation differs from the one taken from the switching cycle at identical polarity and voltages. Transitions between the relaxed and the volatile excited states can be achieved via voltage sweeps, which are named subloops. The excited states are stable over time as long as a voltage is applied to the device and have a higher conductance than the stable relaxed state. Experimental data on the time and voltage dependence of the excitation and decay are presented for Ta/TaOx/Pt and Ta/ZrOx/Pt devices. The effect is not limited to one oxide or electrode material but is observed with different magnitudes (up to 10× current change) in several oxide systems. These observations describe an additional state variable of the memristive system that is controlled in a highly polarity dependent manner.

3.
Adv Mater ; 29(23)2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28417593

RESUMO

The control and rational design of redox-based memristive devices, which are highly attractive candidates for next-generation nonvolatile memory and logic applications, is complicated by competing and poorly understood switching mechanisms, which can result in two coexisting resistance hystereses that have opposite voltage polarity. These competing processes can be defined as regular and anomalous resistive switching. Despite significant characterization efforts, the complex nanoscale redox processes that drive anomalous resistive switching and their implications for current transport remain poorly understood. Here, lateral and vertical mapping of O vacancy concentrations is used during the operation of such devices in situ in an aberration corrected transmission electron microscope to explain the anomalous switching mechanism. It is found that an increase (decrease) in the overall O vacancy concentration within the device after positive (negative) biasing of the Schottky-type electrode is associated with the electrocatalytic release and reincorporation of oxygen at the electrode/oxide interface and is responsible for the resistance change. This fundamental insight presents a novel perspective on resistive switching processes and opens up new technological opportunities for the implementation of memristive devices, as anomalous switching can now be suppressed selectively or used deliberately to achieve the desirable so-called deep Reset.

4.
Small ; 11(48): 6444-56, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26540646

RESUMO

Resistively switching devices are considered promising for next-generation nonvolatile random-access memories. Today, such memories are fabricated by means of "top-down approaches" applying thin films sandwiched between nanoscaled electrodes. In contrast, this work presents a "bottom-up approach" disclosing for the first time the resistive switching (RS) of individual TiO2 nanoparticles (NPs). The NPs, which have sizes of 80 and 350 nm, respectively, are obtained by wet chemical synthesis and thermally treated under oxidizing or vacuum conditions for crystallization, respectively. These NPs are deposited on a Pt/Ir bottom electrode and individual NPs are electrically characterized by means of a nanomanipulator system in situ, in a scanning electron microscope. While amorphous NPs and calcined NPs reveal no switching hysteresis, a very interesting behavior is found for the vacuum-annealed, crystalline TiO(2-x) NPs. These NPs reveal forming-free RS behavior, dominantly complementary switching (CS) and, to a small degree, bipolar switching (BS) characteristics. In contrast, similarly vacuum-annealed TiO2 thin films grown by atomic layer deposition show standard BS behavior under the same conditions. The interesting CS behavior of the TiO(2-x) NPs is attributed to the formation of a core-shell-like structure by re-oxidation of the reduced NPs as a unique feature.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA