Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 356: 141887, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38583530

RESUMO

Microplastics pose risks to marine organisms through ingestion, entanglement, and as carriers of toxic additives and environmental pollutants. Plastic pre-production pellet leachates have been shown to affect the development of sea urchins and, to some extent, mussels. The extent of those developmental effects on other animal phyla remains unknown. Here, we test the toxicity of environmental mixed nurdle samples and new PVC pellets for the embryonic development or asexual reproduction by regeneration of animals from all the major animal superphyla (Lophotrochozoa, Ecdysozoa, Deuterostomia and Cnidaria). Our results show diverse, concentration-dependent impacts in all the species sampled for new pellets, and for molluscs and deuterostomes for environmental samples. Embryo axial formation, cell specification and, specially, morphogenesis seem to be the main processes affected by plastic leachate exposure. Our study serves as a proof of principle for the potentially catastrophic effects that increasing plastic concentrations in the oceans and other ecosystems can have across animal populations from all major animal superphyla.


Assuntos
Invertebrados , Microplásticos , Plásticos , Poluentes Químicos da Água , Animais , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Plásticos/toxicidade , Invertebrados/efeitos dos fármacos , Microplásticos/toxicidade , Desenvolvimento Embrionário/efeitos dos fármacos
2.
Front Physiol ; 13: 878062, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35514360

RESUMO

In situ hybridization is one the most commonly used techniques for developmental and evolutionary biology and has extensively contributed to the identification of distinct cell types and cell states, as well dissecting several molecular mechanisms involved in physiological processes. Moreover, it has been used as a tool to compare distinct gene expression patterns and, therefore, genetic programs across animal species. Nowadays, the predominance of transcriptomics in science has imposed the need to establish a reliable, fast and easy whole mount in situ hybridization protocol. Here we describe a fluorescent in situ hybridization protocol that is rapid, accurate and applicable in a great variety of marine species.

3.
Dev Genes Evol ; 230(5-6): 329-338, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32839880

RESUMO

Nitric oxide synthase is ubiquitously present in metazoans and is involved in a wide range of biological processes. Three distinct Nos genes have been so far identified in vertebrates exhibiting a complex expression pattern and transcriptional regulation. Nevertheless, although independent events of Nos duplication have been observed in several taxa, only few studies described the regulatory mechanisms responsible for their activation in non-vertebrate animals. To shed light on the mechanisms underlying neuronal-type Nos expression, we focused on two non-vertebrate chordates: the cephalochordate Branchiostoma lanceolatum and the tunicate Ciona robusta. Here, throughout transphyletic and transgenic approaches, we identified genomic regions in both species acting as Nos functional enhancers during development. In vivo analyses of Nos genomic fragments revealed their ability to recapitulate the endogenous expression territories. Therefore, our results suggest the existence of evolutionary conserved mechanisms responsible for neuronal-type Nos regulation in non-vertebrate chordates. In conclusion, this study paves the way for future characterization of conserved transcriptional logic underlying the expression of neuronal-type Nos genes in chordates.


Assuntos
Ciona intestinalis/genética , Sequência Conservada , Regulação da Expressão Gênica no Desenvolvimento , Anfioxos/genética , Neurônios/metabolismo , Óxido Nítrico Sintase/genética , Animais , Animais Geneticamente Modificados , Evolução Biológica , Ciona intestinalis/embriologia , Ciona intestinalis/crescimento & desenvolvimento , Elementos Facilitadores Genéticos , Genoma , Anfioxos/embriologia , Anfioxos/crescimento & desenvolvimento , Larva/genética , Óxido Nítrico Sintase/metabolismo , Filogenia , Sequências Reguladoras de Ácido Nucleico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...