Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Physiol ; 178(4): 1507-1521, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30333150

RESUMO

Polyacetylenic lipids accumulate in various Apiaceae species after pathogen attack, suggesting that these compounds are naturally occurring pesticides and potentially valuable resources for crop improvement. These compounds also promote human health and slow tumor growth. Even though polyacetylenic lipids were discovered decades ago, the biosynthetic pathway underlying their production is largely unknown. To begin filling this gap and ultimately enable polyacetylene engineering, we studied polyacetylenes and their biosynthesis in the major Apiaceae crop carrot (Daucus carota subsp. sativus). Using gas chromatography and mass spectrometry, we identified three known polyacetylenes and assigned provisional structures to two novel polyacetylenes. We also quantified these compounds in carrot leaf, petiole, root xylem, root phloem, and root periderm extracts. Falcarindiol and falcarinol predominated and accumulated primarily in the root periderm. Since the multiple double and triple carbon-carbon bonds that distinguish polyacetylenes from ubiquitous fatty acids are often introduced by Δ12 oleic acid desaturase (FAD2)-type enzymes, we mined the carrot genome for FAD2 genes. We identified a FAD2 family with an unprecedented 24 members and analyzed public, tissue-specific carrot RNA-Seq data to identify coexpressed members with root periderm-enhanced expression. Six candidate genes were heterologously expressed individually and in combination in yeast and Arabidopsis (Arabidopsis thaliana), resulting in the identification of one canonical FAD2 that converts oleic to linoleic acid, three divergent FAD2-like acetylenases that convert linoleic into crepenynic acid, and two bifunctional FAD2s with Δ12 and Δ14 desaturase activity that convert crepenynic into the further desaturated dehydrocrepenynic acid, a polyacetylene pathway intermediate. These genes can now be used as a basis for discovering other steps of falcarin-type polyacetylene biosynthesis, to modulate polyacetylene levels in plants, and to test the in planta function of these molecules.


Assuntos
Daucus carota/genética , Daucus carota/metabolismo , Enzimas/genética , Proteínas de Plantas/genética , Polímero Poliacetilênico/metabolismo , Alcinos/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatografia em Camada Fina , Di-Inos/metabolismo , Enzimas/metabolismo , Ácidos Graxos Dessaturases/genética , Ácidos Graxos Dessaturases/metabolismo , Álcoois Graxos/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Ácido Linoleico/metabolismo , Ácidos Oleicos/metabolismo , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Polímero Poliacetilênico/análise , Saccharomyces cerevisiae/genética
2.
Plant Physiol ; 178(2): 672-683, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30135097

RESUMO

Plastids comprise a complex set of organelles in plants that can undergo distinctive patterns of differentiation and redifferentiation during their lifespan. Plastids localized to the epidermis and vascular parenchyma are distinctive in size, structural features, and functions. These plastids are termed "sensory" plastids, and here we show their proteome to be distinct from chloroplasts, with specialized stress-associated features. The distinctive sensory plastid proteome in Arabidopsis (Arabidopsis thaliana) derives from spatiotemporal regulation of nuclear genes encoding plastid-targeted proteins. Perturbation caused by depletion of the sensory plastid-specific protein MutS HOMOLOG1 conditioned local, programmed changes in gene networks controlling chromatin, stress-related phytohormone, and circadian clock behavior and producing a global, systemic stress response in the plant. We posit that the sensory plastid participates in sensing environmental stress, integrating this sensory function with epigenetic and gene expression circuitry to condition heritable stress memory.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Transdução de Sinais , Estresse Fisiológico , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Núcleo Celular/metabolismo , Proteínas de Cloroplastos/genética , Proteínas de Cloroplastos/metabolismo , Cloroplastos/metabolismo , Especificidade de Órgãos , Plastídeos/metabolismo , Proteoma
3.
Photosynth Res ; 138(3): 345-360, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29961189

RESUMO

Photosynthetic membranes provide much of the usable energy for life on earth. To produce photosynthetic membrane lipids, multiple transport steps are required, including fatty acid export from the chloroplast stroma to the endoplasmic reticulum, and lipid transport from the endoplasmic reticulum to the chloroplast envelope membranes. Transport of hydrophobic molecules through aqueous space is energetically unfavorable and must be catalyzed by dedicated enzymes, frequently on specialized membrane structures. Here, we review photosynthetic membrane lipid transport to the chloroplast in the context of photosynthetic membrane lipid synthesis. We independently consider the identity of transported lipids, the proteinaceous transport components, and membrane structures which may allow efficient transport. Recent advances in lipid transport of chloroplasts, bacteria, and other systems strongly suggest that lipid transport is achieved by multiple mechanisms which include membrane contact sites with specialized protein machinery. This machinery is likely to include the TGD1, 2, 3 complex with the TGD5 and TGD4/LPTD1 systems, and may also include a number of proteins with domains similar to other membrane contact site lipid-binding proteins. Importantly, the likelihood of membrane contact sites does not preclude lipid transport by other mechanisms including vectorial acylation and vesicle transport. Substantial progress is needed to fully understand all photosynthetic membrane lipid transport processes and how they are integrated.


Assuntos
Cloroplastos/metabolismo , Membranas Intracelulares/metabolismo , Lipídeos de Membrana/biossíntese , Lipídeos de Membrana/metabolismo , Fotossíntese , Transporte Biológico , Lipídeos de Membrana/química , Açúcares/metabolismo
4.
Proc Natl Acad Sci U S A ; 110(19): E1827-36, 2013 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-23610440

RESUMO

The endosperm of cereal grains is one of the most valuable products of modern agriculture. Cereal endosperm development comprises different phases characterized by mitotic cell proliferation, endoreduplication, the accumulation of storage compounds, and programmed cell death. Although manipulation of these processes could maximize grain yield, how they are regulated and integrated is poorly understood. We show that the Retinoblastoma-related (RBR) pathway controls key aspects of endosperm development in maize. Down-regulation of RBR1 by RNAi resulted in up-regulation of RBR3-type genes, as well as the MINICHROMOSOME MAINTENANCE 2-7 gene family and PROLIFERATING CELL NUCLEAR ANTIGEN, which encode essential DNA replication factors. Both the mitotic and endoreduplication cell cycles were stimulated. Developing transgenic endosperm contained 42-58% more cells and ∼70% more DNA than wild type, whereas there was a reduction in cell and nuclear sizes. In addition, cell death was enhanced. The DNA content of mature endosperm increased 43% upon RBR1 down-regulation, whereas storage protein content and kernel weight were essentially not affected. Down-regulation of both RBR1 and CYCLIN DEPENDENT KINASE A (CDKA);1 indicated that CDKA;1 is epistatic to RBR1 and controls endoreduplication through an RBR1-dependent pathway. However, the repressive activity of RBR1 on downstream targets was independent from CDKA;1, suggesting diversification of RBR1 activities. Furthermore, RBR1 negatively regulated CDK activity, suggesting the presence of a feedback loop. These results indicate that the RBR1 pathway plays a major role in regulation of different processes during maize endosperm development and suggest the presence of tissue/organ-level regulation of endosperm/seed homeostasis.


Assuntos
Proteínas de Arabidopsis/metabolismo , Endosperma/fisiologia , Proteína do Retinoblastoma/metabolismo , Zea mays/metabolismo , Ciclo Celular , Morte Celular , Proliferação de Células , Quinases Ciclina-Dependentes/metabolismo , Regulação da Expressão Gênica de Plantas , Genótipo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Interferência de RNA , Sementes/fisiologia , Zea mays/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...