Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1230559, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38078080

RESUMO

Yellow mosaic disease (YMD) is one of the major devastating constraints to soybean production in Pakistan. In the present study, we report the identification of resistant soybean germplasm and a novel mutation linked with disease susceptibility. Diverse soybean germplasm were screened to identify YMD-resistant lines under natural field conditions during 2016-2020. The severity of YMD was recorded based on symptoms and was grouped according to the disease rating scale, which ranges from 0 to 5, and named as highly resistant (HR), moderately resistant (MR), resistant (R), susceptible (S), moderately susceptible (MS), and highly susceptible (HS), respectively. A HR plant named "NBG-SG Soybean" was identified, which showed stable resistance for 5 years (2016-2020) at the experimental field of the National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan, a location that is a hot spot area for virus infection. HS soybean germplasm were also identified as NBG-47 (PI628963), NBG-117 (PI548655), SPS-C1 (PI553045), SPS-C9 (PI639187), and cv. NARC-2021. The YMD adversely affected the yield and a significant difference was found in the potential yield of NBG-SG-soybean (3.46 ± 0.13a t/ha) with HS soybean germplasm NARC-2021 (0.44 ± 0.01c t/ha) and NBG-117 (1.12 ± 0.01d t/ha), respectively. The YMD incidence was also measured each year (2016-2020) and data showed a significant difference in the percent disease incidence in the year 2016 and 2018 and a decrease after 2019 when resistant lines were planted. The resistance in NBG-SG soybean was further confirmed by testing for an already known mutation (SNP at 149th position) for YMD in the Glyma.18G025100 gene of soybean. The susceptible soybean germplasm in the field was found positive for the said mutation. Moreover, an ortholog of the CYR-1 viral resistance gene from black gram was identified in soybean as Glyma.13G194500, which has a novel deletion (28bp/90bp) in the 5`UTR of susceptible germplasm. The characterized soybean lines from this study will assist in starting soybean breeding programs for YMD resistance. This is the first study regarding screening and molecular analysis of soybean germplasm for YMD resistance.

2.
Front Genome Ed ; 5: 1074641, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37032710

RESUMO

The advent of CRISPR-Cas technology has made it the genome editing tool of choice in all kingdoms of life, including plants, which can have large, highly duplicated genomes. As a result, finding adequate target sequences that meet the specificities of a given Cas nuclease on any gene of interest remains challenging in many cases. To assess target site flexibility, we tested five different Cas9/Cas12a endonucleases (SpCas9, SaCas9, St1Cas9, Mb3Cas12a, and AsCas12a) in embryogenic rice calli from Taipei 309 at 37°C (optimal temperature for most Cas9/Cas12a proteins) and 27°C (optimal temperature for tissue culture) and measured their editing rates under regular tissue culture conditions using Illumina sequencing. StCas9 and AsCas12 were not functional as tested, regardless of the temperature used. SpCas9 was the most efficient endonuclease at either temperature, regardless of whether monoallelic or biallelic edits were considered. Mb3Cas12a at 37°C was the next most efficient endonuclease. Monoallelic edits prevailed for both SaCas9 and Mb3Cas12a at 27°C, but biallelic edits prevailed at 37°C. Overall, the use of other Cas9 orthologs, the use of Cas12a endonucleases, and the optimal temperature can expand the range of targetable sequences.

3.
Front Microbiol ; 13: 923281, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35783378

RESUMO

Oomycete and fungal pathogens cause billions of dollars of damage to crops worldwide annually. Therefore, there remains a need for broad-spectrum resistance genes, especially ones that target pathogens but do not interfere with colonization by beneficial microbes. Motivated by evidence suggesting that phosphatidylinositol-3-phosphate (PI3P) may be involved in the delivery of some oomycete and fungal virulence effector proteins, we created stable transgenic soybean plants that express and secrete two different PI3P-binding proteins, GmPH1 and VAM7, in an effort to interfere with effector delivery and confer resistance. Soybean plants expressing the two PI3P-binding proteins exhibited reduced infection by the oomycete pathogen Phytophthora sojae compared to control lines. Measurements of nodulation by nitrogen-fixing mutualistic bacterium Bradyrhizobium japonicum, which does not produce PI3P, revealed that the two lines with the highest levels of GmPH1 transcripts exhibited reductions in nodulation and in benefits from nodulation. Transcriptome and plant hormone measurements were made of soybean lines with the highest transcript levels of GmPH1 and VAM7, as well as controls, following P. sojae- or mock-inoculation. The results revealed increased levels of infection-associated transcripts in the transgenic lines, compared to controls, even prior to P. sojae infection, suggesting that the plants were primed for increased defense. The lines with reduced nodulation exhibited elevated levels of jasmonate-isoleucine and of transcripts of a JAR1 ortholog encoding jasmonate-isoleucine synthetase. However, lines expressing VAM7 transgenes exhibited normal nodulation and no increases in jasmonate-isoleucine. Overall, together with previously published data from cacao and from P. sojae transformants, the data suggest that secretion of PI3P-binding proteins may confer disease resistance through a variety of mechanisms.

4.
Transgenic Res ; 30(3): 239-249, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33797713

RESUMO

Genome editing using CRISPR/Cas9 has been highlighted as a powerful tool for crop improvement. Nevertheless, its efficiency can be improved, especially for crops with a complex genome, such as soybean. In this work, using the CRISPR/Cas9 technology we evaluated two CRISPR systems, a one-component vs. a two-component strategy. In a simplified system, the single transcriptional unit (STU), SpCas9 and sgRNA are driven by only one promoter, and in the conventional system, the two-component transcriptional unit (TCTU), SpCas9, is under the control of a pol II promoter and the sgRNAs are under the control of a pol III promoter. A multiplex system with three targets was designed targeting two different genes, GmIPK1 and GmIPK2, coding for enzymes from the phytic acid synthesis pathway. Both systems were tested using the hairy root soybean methodology. Results showed gene-specific edition. For the GmIPK1 gene, edition was observed in both configurations, with a deletion of 1 to 749 base pairs; however, the TCTU showed higher indel frequencies. For GmIPK2 major exclusions were observed in both systems, but the editing efficiency was low for STU. Both systems (STU or TCTU) have been shown to be capable of promoting effective gene editing in soybean. The TCTU configuration proved to be preferable, since it was more efficient. The STU system was less efficient, but the size of the CRISPR/Cas cassette was smaller.


Assuntos
Sistemas CRISPR-Cas/genética , Edição de Genes , Engenharia Genética , Glycine max/genética , Vetores Genéticos/genética , Genoma de Planta/genética , Regiões Promotoras Genéticas/genética , RNA Guia de Cinetoplastídeos/genética , Glycine max/crescimento & desenvolvimento
5.
Sci Rep ; 11(1): 2556, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510334

RESUMO

Type I Diacylglycerol acyltransferase (DGAT1) catalyzes the final step of the biosynthesis process of triacylglycerol (TAG), the major storage lipids in plant seeds, through the esterification of diacylglycerol (DAG). To characterize the function of DGAT1 genes on the accumulation of oil and other seed composition traits in soybean, transgenic lines were generated via trans-acting siRNA technology, in which three DGAT1 genes (Glyma.13G106100, Glyma.09G065300, and Glyma.17G053300) were downregulated. The simultaneous downregulation of the three isoforms in transgenic lines was found to be associated with the reduction of seed oil concentrations by up to 18 mg/g (8.3%), which was correlated with increases in seed protein concentration up to 42 mg/g (11%). Additionally, the downregulations also influenced the fatty acid compositions in the seeds of transgenic lines through increasing the level of oleic acid, up to 121 mg/g (47.3%). The results of this study illustrate the importance of DGAT1 genes in determining the seed compositions in soybean through the development of new potential technology for manipulating seed quality in soybean to meet the demands for its various food and industrial applications.


Assuntos
Diacilglicerol O-Aciltransferase/metabolismo , Glycine max/metabolismo , Proteínas de Plantas/metabolismo , Sementes/metabolismo , Diacilglicerol O-Aciltransferase/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/genética , Glycine max/genética
6.
Plant Direct ; 4(1): e00178, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31911959

RESUMO

In plants, the phenylpropanoid pathway is responsible for the synthesis of a diverse array of secondary metabolites that include lignin monomers, flavonoids, and coumarins, many of which are essential for plant structure, biomass recalcitrance, stress defense, and nutritional quality. Our previous studies have demonstrated that Populus trichocarpa PtrEPSP-TF, an isoform of 5-enolpyruvylshikimate 3-phosphate (EPSP) synthase, has transcriptional activity and regulates phenylpropanoid biosynthesis in Populus. In this study, we report the identification of single nucleotide polymorphism (SNP) of PtrEPSP-TF that defines its functionality. Populus natural variants carrying this SNP were shown to have reduced lignin content. Here, we demonstrated that the SNP-induced substitution of 142nd amino acid (PtrEPSP-TFD142E) dramatically impairs the DNA-binding and transcriptional activity of PtrEPSP-TF. When introduced to a monocot species rice (Oryza sativa) in which an EPSP synthase isoform with the DNA-binding helix-turn-helix (HTH) motif is absent, the PtrEPSP-TF, but not PtrEPSP-TFD142E, activated genes in the phenylpropanoid pathway. More importantly, heterologous expression of PtrEPSP-TF uncovered five new transcriptional regulators of phenylpropanoid biosynthesis in rice. Collectively, this study identifies the key amino acid required for PtrEPSP-TF functionality and provides a strategy to uncover new transcriptional regulators in phenylpropanoid biosynthesis.

7.
Nat Biotechnol ; 36(3): 249-257, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29431741

RESUMO

Cell walls in crops and trees have been engineered for production of biofuels and commodity chemicals, but engineered varieties often fail multi-year field trials and are not commercialized. We engineered reduced expression of a pectin biosynthesis gene (Galacturonosyltransferase 4, GAUT4) in switchgrass and poplar, and find that this improves biomass yields and sugar release from biomass processing. Both traits were maintained in a 3-year field trial of GAUT4-knockdown switchgrass, with up to sevenfold increased saccharification and ethanol production and sixfold increased biomass yield compared with control plants. We show that GAUT4 is an α-1,4-galacturonosyltransferase that synthesizes homogalacturonan (HG). Downregulation of GAUT4 reduces HG and rhamnogalacturonan II (RGII), reduces wall calcium and boron, and increases extractability of cell wall sugars. Decreased recalcitrance in biomass processing and increased growth are likely due to reduced HG and RGII cross-linking in the cell wall.


Assuntos
Biocombustíveis , Parede Celular/genética , Glucuronosiltransferase/genética , Pectinas/biossíntese , Biomassa , Boro/metabolismo , Cálcio/metabolismo , Parede Celular/enzimologia , Parede Celular/metabolismo , Produtos Agrícolas , Glucuronosiltransferase/química , Panicum/enzimologia , Panicum/genética , Pectinas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Populus/enzimologia , Populus/genética , Açúcares/metabolismo
8.
Plant Physiol ; 175(3): 1370-1380, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28912378

RESUMO

Rhg4 is a major genetic locus that contributes to soybean cyst nematode (SCN) resistance in the Peking-type resistance of soybean (Glycine max), which also requires the rhg1 gene. By map-based cloning and functional genomic approaches, we previously showed that the Rhg4 gene encodes a predicted cytosolic serine hydroxymethyltransferase (GmSHMT08); however, the novel gain of function of GmSHMT08 in SCN resistance remains to be characterized. Using a forward genetic screen, we identified an allelic series of GmSHMT08 mutants that shed new light on the mechanistic aspects of GmSHMT08-mediated resistance. The new mutants provide compelling genetic evidence that Peking-type rhg1 resistance in cv Forrest is fully dependent on the GmSHMT08 gene and demonstrates that this resistance is mechanistically different from the PI 88788-type of resistance that only requires rhg1 We also demonstrated that rhg1-a from cv Forrest, although required, does not exert selection pressure on the nematode to shift from HG type 7, which further validates the bigenic nature of this resistance. Mapping of the identified mutations onto the SHMT structural model uncovered key residues for structural stability, ligand binding, enzyme activity, and protein interactions, suggesting that GmSHMT08 has additional functions aside from its main enzymatic role in SCN resistance. Lastly, we demonstrate the functionality of the GmSHMT08 SCN resistance gene in a transgenic soybean plant.


Assuntos
Resistência à Doença , Glicina Hidroximetiltransferase/genética , Glycine max/enzimologia , Glycine max/parasitologia , Mutagênese/genética , Doenças das Plantas/imunologia , Doenças das Plantas/parasitologia , Tylenchoidea/fisiologia , Animais , Teste de Complementação Genética , Testes Genéticos , Glicina Hidroximetiltransferase/química , Modelos Moleculares , Mutação/genética , Plantas Geneticamente Modificadas , Glycine max/imunologia , Tylenchoidea/patogenicidade , Virulência
9.
Plant Biotechnol J ; 14(1): 117-27, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25816689

RESUMO

In plants, particular micro-RNAs (miRNAs) induce the production of a class of small interfering RNAs (siRNA) called trans-acting siRNA (ta-siRNA) that lead to gene silencing. A single miRNA target is sufficient for the production of ta-siRNAs, which target can be incorporated into a vector to induce the production of siRNAs, and ultimately gene silencing. The term miRNA-induced gene silencing (MIGS) has been used to describe such vector systems in Arabidopsis. Several ta-siRNA loci have been identified in soybean, but, prior to this work, few of the inducing miRNAs have been experimentally validated, much less used to silence genes. Nine ta-siRNA loci and their respective miRNA targets were identified, and the abundance of the inducing miRNAs varies dramatically in different tissues. The miRNA targets were experimentally verified by silencing a transgenic GFP gene and two endogenous genes in hairy roots and transgenic plants. Small RNAs were produced in patterns consistent with the utilization of the ta-siRNA pathway. A side-by-side experiment demonstrated that MIGS is as effective at inducing gene silencing as traditional hairpin vectors in soybean hairy roots. Soybean plants transformed with MIGS vectors produced siRNAs and silencing was observed in the T1 generation. These results complement previous reports in Arabidopsis by demonstrating that MIGS is an efficient way to produce siRNAs and induce gene silencing in other species, as shown with soybean. The miRNA targets identified here are simple to incorporate into silencing vectors and offer an effective and efficient alternative to other gene silencing strategies.


Assuntos
Inativação Gênica , RNA Interferente Pequeno/metabolismo , Sequência de Bases , Genes de Plantas , Vetores Genéticos/metabolismo , Proteínas de Fluorescência Verde/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Raízes de Plantas/genética , Plantas Geneticamente Modificadas , Reação em Cadeia da Polimerase em Tempo Real , Glycine max/genética
10.
PLoS One ; 10(9): e0138196, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26376481

RESUMO

The pink or red ketocarotenoids, canthaxanthin and astaxanthin, are used as feed additives in the poultry and aquaculture industries as a source of egg yolk and flesh pigmentation, as farmed animals do not have access to the carotenoid sources of their wild counterparts. Because soybean is already an important component in animal feed, production of these carotenoids in soybean could be a cost-effective means of delivery. In order to characterize the ability of soybean seed to produce carotenoids, soybean cv. Jack was transformed with the crtB gene from Pantoea ananatis, which codes for phytoene synthase, an enzyme which catalyzes the first committed step in the carotenoid pathway. The crtB gene was engineered together in combinations with ketolase genes (crtW from Brevundimonas sp. strain SD212 and bkt1 from Haematococcus pluvialis) to produce ketocarotenoids; all genes were placed under the control of seed-specific promoters. HPLC results showed that canthaxanthin is present in the transgenic seeds at levels up to 52 µg/g dry weight. Transgenic seeds also accumulated other compounds in the carotenoid pathway, such as astaxanthin, lutein, ß-carotene, phytoene, α-carotene, lycopene, and ß-cryptoxanthin, whereas lutein was the only one of these detected in non-transgenic seeds. The accumulation of astaxanthin, which requires a ß-carotene hydroxylase in addition to a ß-carotene ketolase, in the transgenic seeds suggests that an endogenous soybean enzyme is able to work in combination with the ketolase transgene. Soybean seeds that accumulate ketocarotenoids could potentially be used in animal feed to reduce or eliminate the need for the costly addition of these compounds.


Assuntos
Carotenoides/biossíntese , Glycine max/metabolismo , Engenharia Metabólica , Redes e Vias Metabólicas/genética , Plantas Geneticamente Modificadas/metabolismo , Sementes/metabolismo , Transgenes/fisiologia , Cantaxantina/biossíntese , Clonagem Molecular , DNA Bacteriano/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética , Sementes/crescimento & desenvolvimento , Glycine max/genética , Glycine max/crescimento & desenvolvimento
11.
BMC Biotechnol ; 15: 16, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25879861

RESUMO

BACKGROUND: The ability to selectively alter genomic DNA sequences in vivo is a powerful tool for basic and applied research. The CRISPR/Cas9 system precisely mutates DNA sequences in a number of organisms. Here, the CRISPR/Cas9 system is shown to be effective in soybean by knocking-out a green fluorescent protein (GFP) transgene and modifying nine endogenous loci. RESULTS: Targeted DNA mutations were detected in 95% of 88 hairy-root transgenic events analyzed. Bi-allelic mutations were detected in events transformed with eight of the nine targeting vectors. Small deletions were the most common type of mutation produced, although SNPs and short insertions were also observed. Homoeologous genes were successfully targeted singly and together, demonstrating that CRISPR/Cas9 can both selectively, and generally, target members of gene families. Somatic embryo cultures were also modified to enable the production of plants with heritable mutations, with the frequency of DNA modifications increasing with culture time. A novel cloning strategy and vector system based on In-Fusion® cloning was developed to simplify the production of CRISPR/Cas9 targeting vectors, which should be applicable for targeting any gene in any organism. CONCLUSIONS: The CRISPR/Cas9 is a simple, efficient, and highly specific genome editing tool in soybean. Although some vectors are more efficient than others, it is possible to edit duplicated genes relatively easily. The vectors and methods developed here will be useful for the application of CRISPR/Cas9 to soybean and other plant species.


Assuntos
Sistemas CRISPR-Cas/genética , Engenharia Genética/métodos , Genoma de Planta/genética , Glycine max/genética , Técnicas de Inativação de Genes , Vetores Genéticos/genética , Mutação , Plantas Geneticamente Modificadas/genética , Sementes/genética
12.
Plant Cell Rep ; 33(2): 313-22, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24177598

RESUMO

Transformation of elite switchgrass (Panicum virgatum L.) genotypes would facilitate the characterization of genes related to cell wall recalcitrance to saccharification. However, transformation of explants from switchgrass plants has remained difficult. Therefore, the objective of this study was to develop a biolistic transformation protocol for elite genotypes. Three switchgrass genotypes (ST1, ST2, and AL2) were previously selected for tissue culture responsiveness. One genotype, SA37, was selected for further use due to its improved formation of callus amenable to transformation. Various medium sets were compared and a previously published medium set provided cultures with >96 % embryogenic callus, and data on transient and stable gene expression of RFP were used to optimize biolistic parameters, and further validate the switchgrass (PvUbi1) promoter. SA37 proved to be the most transformable, whereas eight transgenic calli on average were recovered per bombardment of 20 calli (40 % efficiency) when using a three-day day preculture step, 0.6 M osmotic adjustment medium, 4,482 kPa rupture disks and 0.4 µm gold particles which traveled 9 cm before hitting the target callus tissue. Regenerability was high, especially for ST2, for which it is possible to recover on average over 400 plants per half-gram callus tissue. It is now possible to routinely and efficiently engineer elite switchgrass genotypes using biolistic transformation.


Assuntos
Biolística/métodos , Engenharia Genética/métodos , Panicum/genética , Transformação Genética , Genes Reporter , Vetores Genéticos , Genótipo , Panicum/classificação , Técnicas de Embriogênese Somática de Plantas , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas/genética , Regeneração , Técnicas de Cultura de Tecidos
13.
Plant Biotechnol J ; 10(2): 226-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21955653

RESUMO

Switchgrass (Panicum virgatum L.) is a C4 perennial grass and has been identified as a potential bioenergy crop for cellulosic ethanol because of its rapid growth rate, nutrient use efficiency and widespread distribution throughout North America. The improvement of bioenergy feedstocks is needed to make cellulosic ethanol economically feasible, and genetic engineering of switchgrass is a promising approach towards this goal. A crucial component of creating transgenic switchgrass is having the capability of transforming the explants with DNA sequences of interest using vector constructs. However, there are limited options with the monocot plant vectors currently available. With this in mind, a versatile set of Gateway-compatible destination vectors (termed pANIC) was constructed to be used in monocot plants for transgenic crop improvement. The pANIC vectors can be used for transgene overexpression or RNAi-mediated gene suppression. The pANIC vector set includes vectors that can be utilized for particle bombardment or Agrobacterium-mediated transformation. All the vectors contain (i) a Gateway cassette for overexpression or silencing of the target sequence, (ii) a plant selection cassette and (iii) a visual reporter cassette. The pANIC vector set was functionally validated in switchgrass and rice and allows for high-throughput screening of sequences of interest in other monocot species as well.


Assuntos
Produtos Agrícolas/genética , Vetores Genéticos/genética , Panicum/genética , Produtos Agrícolas/metabolismo , Etanol/metabolismo , Regulação da Expressão Gênica de Plantas , Engenharia Genética , Oryza/genética , Panicum/metabolismo , Plantas Geneticamente Modificadas , Transformação Genética
14.
Plant Physiol ; 157(2): 552-62, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21844309

RESUMO

Insertional mutagenesis of legume genomes such as soybean (Glycine max) should aid in identifying genes responsible for key traits such as nitrogen fixation and seed quality. The relatively low throughput of soybean transformation necessitates the use of a transposon-tagging strategy where a single transformation event will produce many mutations over a number of generations. However, existing transposon-tagging tools being used in legumes are of limited utility because of restricted transposition (Ac/Ds: soybean) or the requirement for tissue culture activation (Tnt1: Medicago truncatula). A recently discovered transposable element from rice (Oryza sativa), mPing, and the genes required for its mobilization, were transferred to soybean to determine if it will be an improvement over the other available transposon-tagging tools. Stable transformation events in soybean were tested for mPing transposition. Analysis of mPing excision at early and late embryo developmental stages revealed increased excision during late development in most transgenic lines, suggesting that transposition is developmentally regulated. Transgenic lines that produced heritable mPing insertions were identified, with the plants from the highest activity line producing at least one new insertion per generation. Analysis of the mPing insertion sites in the soybean genome revealed that features displayed in rice were retained including transposition to unlinked sites and a preference for insertion within 2.5 kb of a gene. Taken together these findings indicate that mPing has the characteristics necessary for an effective transposon-tagging resource.


Assuntos
Elementos de DNA Transponíveis , Glycine max/genética , Mutagênese Insercional/métodos , Oryza/genética , Proteínas de Fluorescência Verde/genética , Mutação , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Sementes/genética
15.
BMC Biotechnol ; 11: 74, 2011 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-21745390

RESUMO

BACKGROUND: The ubiquitin protein is present in all eukaryotic cells and promoters from ubiquitin genes are good candidates to regulate the constitutive expression of transgenes in plants. Therefore, two switchgrass (Panicum virgatum L.) ubiquitin genes (PvUbi1 and PvUbi2) were cloned and characterized. Reporter constructs were produced containing the isolated 5' upstream regulatory regions of the coding sequences (i.e. PvUbi1 and PvUbi2 promoters) fused to the uidA coding region (GUS) and tested for transient and stable expression in a variety of plant species and tissues. RESULTS: PvUbi1 consists of 607 bp containing cis-acting regulatory elements, a 5' untranslated region (UTR) containing a 93 bp non-coding exon and a 1291 bp intron, and a 918 bp open reading frame (ORF) that encodes four tandem, head -to-tail ubiquitin monomer repeats followed by a 191 bp 3' UTR. PvUbi2 consists of 692 bp containing cis-acting regulatory elements, a 5' UTR containing a 97 bp non-coding exon and a 1072 bp intron, a 1146 bp ORF that encodes five tandem ubiquitin monomer repeats and a 183 bp 3' UTR. PvUbi1 and PvUbi2 were expressed in all examined switchgrass tissues as measured by qRT-PCR. Using biolistic bombardment, PvUbi1 and PvUbi2 promoters showed strong expression in switchgrass and rice callus, equaling or surpassing the expression levels of the CaMV 35S, 2x35S, ZmUbi1, and OsAct1 promoters. GUS staining following stable transformation in rice demonstrated that the PvUbi1 and PvUbi2 promoters drove expression in all examined tissues. When stably transformed into tobacco (Nicotiana tabacum), the PvUbi2+3 and PvUbi2+9 promoter fusion variants showed expression in vascular and reproductive tissues. CONCLUSIONS: The PvUbi1 and PvUbi2 promoters drive expression in switchgrass, rice and tobacco and are strong constitutive promoter candidates that will be useful in genetic transformation of monocots and dicots.


Assuntos
Genes de Plantas , Técnicas Genéticas , Panicum/genética , Poliubiquitina/genética , Regiões Promotoras Genéticas , Dados de Sequência Molecular , Oryza/genética , Plantas Geneticamente Modificadas , Nicotiana/genética , Transformação Genética , Transgenes
16.
Plant Cell Rep ; 27(5): 893-901, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18305942

RESUMO

Alfalfa is very sensitive to soil acidity and its yield and stand duration are compromised due to inhibited root growth and reduced nitrogen fixation caused by Al toxicity. Soil improvement by liming is expensive and only partially effective, and conventional plant breeding for Al tolerance has had limited success. Because tobacco and papaya plants overexpressing Pseudomonas aeruginosa citrate synthase (CS) have been reported to exhibit enhanced tolerance to Al, alfalfa was engineered by introducing the CS gene controlled by the Arabidopsis Act2 constitutive promoter or the tobacco RB7 root-specific promoter. Fifteen transgenic plants were assayed for exclusion of Al from the root tip, for internal citrate content, for growth in in vitro assays, or for shoot and root growth in either hydroponics or in soil assays. Overall, only the soil assays yielded consistent results. Based on the soil assays, two transgenic events were identified that were more aluminum-tolerant than the non-transgenic control, confirming that citrate synthase overexpression can be a useful tool to help achieve aluminum tolerance.


Assuntos
Alumínio/farmacologia , Proteínas de Bactérias/genética , Citrato (si)-Sintase/genética , Medicago sativa/genética , Plantas Geneticamente Modificadas/genética , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/genética , Proteínas de Bactérias/metabolismo , Southern Blotting , Citrato (si)-Sintase/metabolismo , Citratos/metabolismo , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Medicago sativa/fisiologia , Modelos Genéticos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...