Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(19)2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38316054

RESUMO

We demonstrate the selective area growth of InGaAs nanowires (NWs) on GaAs (111)B substrates using hydride vapor phase epitaxy (HVPE). A high growth rate of more than 50µm h-1and high aspect ratio NWs were obtained. Composition along the NWs was investigated by energy dispersive x-ray spectroscopy giving an average indium composition of 84%. This is consistent with the composition of 78% estimated from the photoluminescence spectrum of the NWs. Crystal structure analysis of the NWs by transmission electron microscopy indicated random stacking faults related to zinc-blende/wurtzite polytypism. This work demonstrates the ability of HVPE for growing high aspect ratio InGaAs NW arrays.

2.
Nanotechnology ; 34(38)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37321202

RESUMO

Control over the distribution of dopants in nanowires is essential for regulating their electronic properties, but perturbations in nanowire microstructure may affect doping. Conversely, dopants may be used to control nanowire microstructure including the generation of twinning superlattices (TSLs)-periodic arrays of twin planes. Here the spatial distribution of Be dopants in a GaAs nanowire with a TSL is investigated using atom probe tomography. Homogeneous dopant distributions in both the radial and axial directions are observed, indicating a decoupling of the dopant distribution from the nanowire microstructure. Although the dopant distribution is microscopically homogenous, radial distribution function analysis discovered that 1% of the Be atoms occur in substitutional-interstitial pairs. The pairing confirms theoretical predictions based on the low defect formation energy. These findings indicate that using dopants to engineer microstructure does not necessarily imply that the dopant distribution is non-uniform.


Assuntos
Arsenicais , Nanofios , Nanofios/química , Nanotecnologia/métodos , Propriedades de Superfície , Arsenicais/química
3.
Nano Lett ; 22(3): 1345-1349, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35089042

RESUMO

Twinning superlattices (TSLs) are a growing class of semiconductor structures proposed as a means of phonon and optical engineering in nanowires (NWs). In this work, we examine TSL formation in Te-doped GaAs NWs grown by a self-assisted vapor-liquid-solid mechanism (with a Ga droplet as the seed particle), using selective-area molecular beam epitaxy. In these NWs, the TSL structure is comprised of alternating zincblende twins, whose formation is promoted by the introduction of Te dopants. Using transmission electron microscopy, we investigated the crystal structure of NWs across various growth conditions (V/III flux ratio, temperature), finding periodic TSLs only at the low V/III flux ratio of 0.5 and intermediate growth temperatures of 492 to 537 °C. These results are explained by a kinetic growth model based on the diffusion flux feeding the Ga droplet.

4.
J Phys Chem Lett ; 12(4): 1275-1283, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497239

RESUMO

GaAs-InGaAs-GaAs core-shell-shell nanowire (NW) structures were grown by gas source molecular beam epitaxy using the selective-area, self-assisted, vapor-liquid-solid method. The structural, morphological, and optical properties of the NWs were examined for different growth conditions of the InGaAs shell. With increasing In concentration of the InGaAs shell, the growth transitioned from preferential deposition at the NW base to the Stranski-Krastanov growth mode where InGaAs islands formed along the NW length. This trend is explained within a nucleation model where there is a critical In flux below which the conformal growth is suppressed and the shell forms only at the NW base. Low growth temperature produced a more uniform In distribution along the NW length but resulted in quenching of the photoluminescence (PL) emission. Alternatively, reducing the shell thickness and increasing the V/III flux ratio resulted in conformal InGaAs shell growth and quantum dot-like PL emission. Our results indicate a pathway toward the conditions for conformal InGaAs shell growth required for satisfactory optoelectronic performance.

5.
Nanotechnology ; 32(4): 042001, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33111709

RESUMO

A review of models for determining the thermoelectric transport coefficients [Formula: see text] (Seebeck coefficient), [Formula: see text] (electrical conductivity), and [Formula: see text] (electronic thermal conductivity) is presented, for the cases of bulk and nanowire structures, along with derivations and a discussion of calculation methods. Results for the transport coefficients in GaAs, InAs, InP and InSb are used to determine the thermoelectric figure of merit, where an enhancement by two orders of magnitude is found for the nanowire case as compared with the bulk. The optimal electron concentration is determined as a function of nanowire diameter for both background and modulation doped nanowires.

6.
Nano Lett ; 20(5): 3344-3351, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32239956

RESUMO

Recent investigations of III-V semiconductor nanowires have revealed periodic zinc-blende twins, known as twinning superlattices, that are often induced by a high-impurity dopant concentration. In the present study, the relationship between the nanowire morphology, crystal structure, and impurity dopant concentration (Te and Be) of twinning superlattices has been studied in GaAs nanowires grown by molecular beam epitaxy using the self-assisted (with a Ga droplet) vapor-liquid-solid process. The contact angle between the Ga droplet and the nanowire top facet decreased linearly with the dopant concentration, whereas the period of the twinning superlattices increased with the doping concentration and was proportional to the nanowire radius. Our model, which is based entirely on surface energetics, is able to explain a unified formation mechanism of twinning superlattices in doped semiconductor nanowires.

7.
Nano Lett ; 19(7): 4498-4504, 2019 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-31203632

RESUMO

The incorporation of Si into vapor-liquid-solid GaAs nanowires often leads to p-type doping, whereas it is routinely used as an n-dopant of planar layers. This property limits the applications of GaAs nanowires in electronic and optoelectronic devices. The strong amphoteric behavior of Si in nanowires is not yet fully understood. Here, we present the first attempt to quantify this behavior as a function of the droplet composition and temperature. It is shown that the doping type critically depends on the As/Ga ratio in the droplet. In sharp contrast to vapor-solid growth, the droplet contains very few As atoms, which enhance their reverse transfer from solid to liquid. As a result, Si atoms preferentially replace As in GaAs, leading to p-type doping in nanowires. Hydride vapor phase epitaxy provides the highest As concentrations in the catalyst droplets during their vapor-liquid-solid growth, resulting in n-type dopant behavior of Si. We present experimental data on n-doped Si-doped GaAs nanowires grown by this method and explain the doping within our model. These results give a clear route for obtaining n-type or p-type Si doping in GaAs nanowires and may be extended to other III-V nanowires.

8.
Opt Express ; 27(4): A133-A147, 2019 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-30876055

RESUMO

We investigate the accuracy of rigorous coupled-wave analysis (RCWA) for near-field computations within cylindrical GaAs nanowire solar cells and discover excellent accuracy with low computational cost at long incident wavelengths but poor accuracy at short incident wavelengths. These near fields give the carrier generation rate, and their accurate determination is essential for device modeling. We implement two techniques for increasing the accuracy of the near fields generated by RCWA and give some guidance on parameters required for convergence along with an estimate of their associated computation times. The first improvement removes Gibbs phenomenon artifacts from the RCWA fields, and the second uses the extremely well-converged far-field absorption to rescale the local fields. These improvements allow a computational speedup between 30 and 1000 times for spectrally integrated calculations, depending on the density of the near fields desired. Some spectrally resolved quantities, especially at short wavelengths, remain expensive, but RCWA is still an excellent method for performing those calculations. These improvements open up the possibility of using RCWA for low-cost optical modeling in a full optoelectronic device model of nanowire solar cells.

9.
Nanotechnology ; 30(7): 075401, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30524113

RESUMO

A betavoltaic device is reported that directly converts beta energy from a 63Ni radioisotope into electrical energy by impact ionization in a GaP nanowire array. The GaP nanowires are grown in a periodic array by molecular beam epitaxy on silicon using the self-assisted vapor-liquid-solid method. By growing GaP nanowires with large packing fraction and length on the order of the maximum beta range, the nanowires can efficiently capture the betas with high energy conversion efficiency while using inexpensive Si substrates. Monte Carlo simulations predict a betavoltaic efficiency in agreement with experimental results. The nanowire betavoltaic device can be used as a power source for nano-/micro-systems such as mobile electronic devices, implantable medical devices, and wireless sensor networks.

10.
Nanotechnology ; 28(8): 085202, 2017 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-28106009

RESUMO

The superconducting proximity effect is probed experimentally in Josephson junctions fabricated with InAs nanowires contacted by Nb leads. Contact transparencies [Formula: see text] are observed. The electronic phase coherence length at low temperatures exceeds the channel length. However, the elastic scattering length is a few times shorter than the channel length. Electrical measurements reveal two regimes of quantum transport: (i) the Josephson regime, characterised by a dissipationless current up to ∼100 nA, and (ii) the quantum dot (QD) regime, characterised by the formation of Andreev bound states (ABS) associated with spontaneous QDs inside the nanowire channel. In regime (i), the behaviour of the critical current I c versus an axial magnetic field [Formula: see text] shows an unexpected modulation and persistence to fields [Formula: see text] T. In the QD regime, the ABS are modelled as the current-biased solutions of an Anderson-type model. The applicability of devices in both transport regimes to Majorana fermion experiments is discussed.

11.
Nanotechnology ; 25(41): 415304, 2014 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-25258192

RESUMO

Vertically oriented and ordered GaAs nanowire arrays have been grown by the self-assisted mechanism using substrates prepared with nano-patterned oxide templates. Patterned Ga-assisted GaAs nanowire growth on (111) silicon by molecular beam epitaxy showed that the axial and radial growth rates increased with increasing interhole spacing. A model is described which accounts for the correlation of the final length and diameter with pattern pitch. The model considers that growth material is supplied by a secondary flux of both gallium and arsenic adatoms desorbing from the oxide surface between the nanowires which subsequently impinge on the liquid droplet and nanowire sidewalls. We show that shading of the incident and scattered flux by neighboring nanowires in the array can strongly affect the axial and radial growth rates, leading to significant differences in final nanowire morphologies.

12.
Nanotechnology ; 24(22): 225202, 2013 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-23633474

RESUMO

Effective electron mobilities are obtained by transport measurements on InAs nanowire field-effect transistors at temperatures ranging from 10 to 200 K. The mobility increases with temperatures below ∼30-50 K, and then decreases with temperatures above 50 K, consistent with other reports. The magnitude and temperature dependence of the observed mobility can be explained by Coulomb scattering from ionized surface states at typical densities. The behaviour above 50 K is ascribed to the thermally activated increase in the number of scatterers, although nanoscale confinement also plays a role as higher radial subbands are populated, leading to interband scattering and a shift of the carrier distribution closer to the surface. Scattering rate calculations using finite-element simulations of the nanowire transistor confirm that these mechanisms are able to explain the data.

13.
Nanotechnology ; 20(2): 025610, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19417279

RESUMO

An experimental approach to achieving phase purity in nanowires through molecular beam epitaxy growth is presented. Superlattice heterostructured nanowires were grown, consisting of alternating layers of GaAsP and GaP. The observed core-multishell heterostructure, extending axially and radially, is attributed to simultaneous Au-assisted vertical growth and diffusion-limited radial growth along lateral nanowire facets. Growth interruptions at the GaAsP/GaP interfaces allowed for the elimination of stacking faults and the growth of nanowires with a single-crystalline wurtzite phase.

14.
Nano Lett ; 9(1): 148-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19143502

RESUMO

We report the use of Te as an n-type dopant in GaAs core-shell p-n junction nanowires for use in photovoltaic devices. Te produced significant change in the morphology of GaAs nanowires grown by the vapor-liquid-solid process in a molecular beam epitaxy system. The increase in radial growth of nanowires due to the surfactant effect of Te had a significant impact on the operating characteristics of photovoltaic devices. A decrease in solar cell efficiency occurred when the Te-doped GaAs growth duration was increased.


Assuntos
Arsenicais/química , Cristalização/métodos , Fontes de Energia Elétrica , Eletroquímica/métodos , Gálio/química , Nanoestruturas/química , Nanotecnologia/métodos , Fotoquímica/métodos , Arsenicais/efeitos da radiação , Gálio/efeitos da radiação , Luz , Nanoestruturas/efeitos da radiação , Nanoestruturas/ultraestrutura , Tamanho da Partícula
15.
Nano Lett ; 8(11): 4075-80, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18954120

RESUMO

Poly(ethylene imine) functionalized carbon nanotube thin films, prepared using the vacuum filtration method, were decorated with Au nanoparticles by in situ reduction of HAuCl4 under mild conditions. These Au nanoparticles were subsequently employed for the growth of GaAs nanowires (NWs) by the vapor-liquid-solid process in a gas source molecular beam epitaxy system. The process resulted in the dense growth of GaAs NWs across the entire surface of the single-walled nanotube (SWNT) films. The NWs, which were orientated in a variety of angles with respect to the SWNT films, ranged in diameter between 20 to 200 nm, with heights up to 2.5 microm. Transmission electron microscopy analysis of the NW-SWNT interface indicated that NW growth was initiated upon the surface of the nanotube composite films. Photoluminescence characterization of a single NW specimen showed high optical quality. Rectifying asymmetric current-voltage behavior was observed from contacted NW ensembles and attributed to the core-shell pn-junction within the NWs. Potential applications of such novel hybrid architectures include flexible solar cells, displays, and sensors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...