Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 157(16): 164705, 2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36319417

RESUMO

We report on carbon monoxide desorption and oxidation induced by 400 nm femtosecond laser excitation on the O/Ru(0001) surface probed by time-resolved x-ray absorption spectroscopy (TR-XAS) at the carbon K-edge. The experiments were performed under constant background pressures of CO (6 × 10-8 Torr) and O2 (3 × 10-8 Torr). Under these conditions, we detect two transient CO species with narrow 2π* peaks, suggesting little 2π* interaction with the surface. Based on polarization measurements, we find that these two species have opposing orientations: (1) CO favoring a more perpendicular orientation and (2) CO favoring a more parallel orientation with respect to the surface. We also directly detect gas-phase CO2 using a mass spectrometer and observe weak signatures of bent adsorbed CO2 at slightly higher x-ray energies than the 2π* region. These results are compared to previously reported TR-XAS results at the O K-edge, where the CO background pressure was three times lower (2 × 10-8 Torr) while maintaining the same O2 pressure. At the lower CO pressure, in the CO 2π* region, we observed adsorbed CO and a distribution of OC-O bond lengths close to the CO oxidation transition state, with little indication of gas-like CO. The shift toward "gas-like" CO species may be explained by the higher CO exposure, which blocks O adsorption, decreasing O coverage and increasing CO coverage. These effects decrease the CO desorption barrier through dipole-dipole interaction while simultaneously increasing the CO oxidation barrier.

2.
Plant Cell Environ ; 45(6): 1954-1961, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35297071

RESUMO

Diffuse light has been shown to alter plant leaf photosynthesis, transpiration and water-use efficiency. Despite this, the angular distribution of light for the artificial light sources used with common gas exchange systems is unknown. Here, we quantify the angular distribution of light from common gas exchange systems and demonstrate the use of an integrating sphere for manipulating those light distributions. Among three different systems, light from a 90° angle perpendicular to the leaf surface (±5.75°) was <25% of the total light reaching the leaf surface. The integrating sphere resulted in a greater range of possible distributions from predominantly direct light (i.e., >40% of light from a 90 ± 5.75° angle perpendicular to the leaf surface) to almost entirely diffuse (i.e., light from an even distribution drawn from a nearly 0° horizontal angle to a perpendicular 90° angle). The integrating sphere can thus create light environments that more closely mimic the variation in sunlight under both clear and cloudy conditions. In turn, different proportions of diffuse light increased, decreased or did not change photosynthetic rates depending on the plant species observed. This new tool should allow the scientific community to explore new and creative questions about plant function within the context of global climate change.


Assuntos
Fotossíntese , Folhas de Planta , Fenômenos Fisiológicos Vegetais , Transpiração Vegetal , Plantas , Água
3.
J Chem Phys ; 156(2): 024704, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35032981

RESUMO

Methanol decomposition on Ni(111) surfaces has been studied in the presence and absence of oxygen using temperature-programmed desorption and temperature-dependent sum frequency generation spectroscopy. Under both conditions the C-H and O-H bonds break, forming carbon monoxide and atomic hydrogen on the surface. No C-O bond scission was observed, limiting the number of reaction pathways. The O-H bonds break first (>150 K), forming surface methoxy, followed by C-H bond breakage (>250 K). All atomic hydrogen desorbs from the surface as H2 through H+H recombinative desorption. H2 desorbs at a higher temperature in the presence of oxygen (>300 K) than the absence of oxygen (>250 K) as the oxygen on the surface stabilizes the H atoms, forming surface hydroxide (OH). The surface oxygen also appears to stabilize the O-H and C-H bonds, leading to slightly higher dissociation temperatures. The CO molecules occupy both the bridge sites and the top sites of the Ni atoms as surface H appears to force the CO molecules to the top sites. There is a slight blueshift in the C-O bond vibration for both the O covered and O free surfaces due to CO being more mobile. On the O free surface, the C-O peak width broadens as low-frequency modes are activated. Finally, CO desorbs between 350 and 400 K.

4.
Phys Rev Lett ; 129(27): 276001, 2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36638285

RESUMO

The electronic excitation occurring on adsorbates at ultrafast timescales from optical lasers that initiate surface chemical reactions is still an open question. Here, we report the ultrafast temporal evolution of x-ray absorption spectroscopy (XAS) and x-ray emission spectroscopy (XES) of a simple well-known adsorbate prototype system, namely carbon (C) atoms adsorbed on a nickel [Ni(100)] surface, following intense laser optical pumping at 400 nm. We observe ultrafast (∼100 fs) changes in both XAS and XES showing clear signatures of the formation of a hot electron-hole pair distribution on the adsorbate. This is followed by slower changes on a few picoseconds timescale, shown to be consistent with thermalization of the complete C/Ni system. Density functional theory spectrum simulations support this interpretation.

5.
Phys Rev Lett ; 127(1): 016802, 2021 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270277

RESUMO

We use a pump-probe scheme to measure the time evolution of the C K-edge x-ray absorption spectrum from CO/Ru(0001) after excitation by an ultrashort high-intensity optical laser pulse. Because of the short duration of the x-ray probe pulse and precise control of the pulse delay, the excitation-induced dynamics during the first picosecond after the pump can be resolved with unprecedented time resolution. By comparing with density functional theory spectrum calculations, we find high excitation of the internal stretch and frustrated rotation modes occurring within 200 fs of laser excitation, as well as thermalization of the system in the picosecond regime. The ∼100 fs initial excitation of these CO vibrational modes is not readily rationalized by traditional theories of nonadiabatic coupling of adsorbates to metal surfaces, e.g., electronic frictions based on first order electron-phonon coupling or transient population of adsorbate resonances. We suggest that coupling of the adsorbate to nonthermalized electron-hole pairs is responsible for the ultrafast initial excitation of the modes.

6.
Phys Chem Chem Phys ; 22(5): 2677-2684, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-31531435

RESUMO

The transient dynamics of carbon monoxide (CO) molecules on a Ru(0001) surface following femtosecond optical laser pump excitation has been studied by monitoring changes in the unoccupied electronic structure using an ultrafast X-ray free-electron laser (FEL) probe. The particular symmetry of perpendicularly chemisorbed CO on the surface is exploited to investigate how the molecular orientation changes with time by varying the polarization of the FEL pulses. The time evolution of spectral features corresponding to the desorption precursor state was well distinguished due to the narrow line-width of the C K-edge in the X-ray absorption (XA) spectrum, illustrating that CO molecules in the precursor state rotated freely and resided on the surface for several picoseconds. Most of the CO molecules trapped in the precursor state ultimately cooled back down to the chemisorbed state, while we estimate that ∼14.5 ± 4.9% of the molecules in the precursor state desorbed into the gas phase. It was also observed that chemisorbed CO molecules diffused over the metal surface from on-top sites toward highly coordinated sites. In addition, a new "vibrationally hot precursor" state was identified in the polarization-dependent XA spectra.

7.
J Chem Phys ; 149(23): 234707, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30579301

RESUMO

We report on atom-specific activation of CO oxidation on Ru(0001) via resonant X-ray excitation. We show that resonant 1s core-level excitation of atomically adsorbed oxygen in the co-adsorbed phase of CO and oxygen directly drives CO oxidation. We separate this direct resonant channel from indirectly driven oxidation via X-ray induced substrate heating. Based on density functional theory calculations, we identify the valence-excited state created by the Auger decay as the driving electronic state for direct CO oxidation. We utilized the fresh-slice multi-pulse mode at the Linac Coherent Light Source that provided time-overlapped and 30 fs delayed pairs of soft X-ray pulses and discuss the prospects of femtosecond X-ray pump X-ray spectroscopy probe, as well as X-ray two-pulse correlation measurements for fundamental investigations of chemical reactions via selective X-ray excitation.

8.
J Phys Chem Lett ; 7(18): 3647-51, 2016 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-27584914

RESUMO

The concept of bonding and antibonding orbitals is fundamental in chemistry. The population of those orbitals and the energetic difference between the two reflect the strength of the bonding interaction. Weakening the bond is expected to reduce this energetic splitting, but the transient character of bond-activation has so far prohibited direct experimental access. Here we apply time-resolved soft X-ray spectroscopy at a free-electron laser to directly observe the decreased bonding-antibonding splitting following bond-activation using an ultrashort optical laser pulse.

9.
Phys Rev Lett ; 115(3): 036103, 2015 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-26230806

RESUMO

We demonstrate the use of intense, quasi-half-cycle THz pulses, with an associated electric field component comparable to intramolecular electric fields, to direct the reaction coordinate of a chemical reaction by stimulating the nuclear motions of the reactants. Using a strong electric field from a THz pulse generated via coherent transition radiation from an ultrashort electron bunch, we present evidence that CO oxidation on Ru(0001) is selectively induced, while not promoting the thermally induced CO desorption process. The reaction is initiated by the motion of the O atoms on the surface driven by the electric field component of the THz pulse, rather than thermal heating of the surface.

10.
J Phys Chem A ; 115(50): 14306-14, 2011 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-22112161

RESUMO

We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer.


Assuntos
Elétrons , Transferência de Energia , Óxido Nítrico/química , Césio/química , Físico-Química , Ouro/química , Íons , Cinética , Modelos Químicos , Propriedades de Superfície , Termodinâmica , Vibração
11.
J Chem Phys ; 134(17): 171102, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21548662

RESUMO

Short intense laser pulses of visible and infrared light can dramatically accelerate crystal nucleation from transparent solutions; previous studies invoke mechanisms that are only applicable for nucleation of ordered phases or high dielectric phases. However, we show that similar laser pulses induce CO(2) bubble nucleation in carbonated water. Additionally, in water that is cosupersaturated with argon and glycine, argon bubbles escaping from the water can induce crystal nucleation without a laser. Our findings suggest a possible link between laser-induced nucleation of bubbles and crystals.


Assuntos
Dióxido de Carbono/química , Cristalização/métodos , Lasers , Água/química , Argônio/química , Glicina/química , Soluções/química
12.
Phys Chem Chem Phys ; 13(1): 97-9, 2011 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-21076786

RESUMO

We report the first direct measurement of the kinetic energy of exoelectrons produced by collisions of vibrationally excited molecules with a low work function metal surface exhibiting electron excitations of 64% (most probable) and 95% (maximum) of the initial vibrational energy. This remarkable efficiency for vibrational-to-electronic energy transfer is in good agreement with previous results suggesting the coupling of multiple vibrational quanta to a single electron.


Assuntos
Elétrons , Metais/química , Transferência de Energia , Cinética , Óxido Nítrico/química , Teoria Quântica , Propriedades de Superfície , Vibração
13.
Rev Sci Instrum ; 81(6): 063106, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20590224

RESUMO

Nanosecond optical pulses with high power and spectral brightness in the deep ultraviolet (UV) region have been produced by sum frequency mixing of nearly transform-limited-bandwidth IR light originating from a home-built injection-seeded ring cavity KTiOPO(4) optical parametric oscillator (OPO) and the fourth harmonic beam of an injection-seeded Nd:YAG laser used simultaneously to pump the OPO with the second harmonic. We demonstrate UV output, tunable from 204 to 207 nm, which exhibits pulse energies up to 5 mJ with a bandwidth better than 0.01 cm(-1). We describe how the approach shown in this paper can be extended to wavelengths shorter than 185 nm. The injection-seeded OPO provides high conversion efficiency (>40% overall energy conversion) and superior beam quality required for highly efficient downstream mixing where sum frequencies are generated in the UV. The frequency stability of the system is excellent, making it highly suitable for optical pumping. We demonstrate high resolution spectroscopy as well as optical pumping using laser-induced fluorescence and stimulated emission pumping, respectively, in supersonic pulsed molecular beams of nitric oxide.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...