Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 5(10): eaay0352, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31692742

RESUMO

Boron carbide suffers from a loss of strength and toughness when subjected to high shear stresses due to amorphization. Here, we report that a small amount of Si doping (~1 atomic %) leads to a substantial decrease in stress-induced amorphization due to a noticeable change of the deformation mechanisms in boron carbide. In the undoped boron carbide, the Berkovich indentation-induced quasi-plasticity is dominated by amorphization and microcracking along the amorphous shear bands. This mechanism resulted in long, distinct, and single-variant shear faults. In contrast, substantial fragmentation with limited amorphization was activated in the Si-doped boron carbide, manifested by the short, diffuse, and multivariant shear faults. Microcracking via fragmentation competed with and subsequently mitigated amorphization. This work highlights the important roles that solute atoms play on the structural stability of boron carbide and opens up new avenues to tune deformation mechanisms of ceramics via doping.

2.
ACS Appl Mater Interfaces ; 10(5): 5072-5080, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29346723

RESUMO

The role that grain boundaries (GBs) can play on mechanical properties has been studied extensively for metals and alloys. However, for covalent solids such as boron carbide (B4C), the role of GB on the inelastic response to applied stresses is not well established. We consider here the unusual ceramic, boron carbide (B4C), which is very hard and lightweight but exhibits brittle impact behavior. We used quantum mechanics (QM) simulations to examine the mechanical response in atomistic structures that model GBs in B4C under pure shear and also with biaxial shear deformation that mimics indentation stress conditions. We carried out these studies for two simple GB models including also the effect of adding Fe atoms (possible sintering aid and/or impurity) to the GB. We found that the critical shear stresses of these GB models are much lower than that for crystalline and twinned B4C. The two GB models lead to different interfacial energies. The higher interfacial energy at the GB only slightly decreases the critical shear stress but dramatically increases the critical failure strain. Doping the GB with Fe decreases the critical shear stress of at the boundary by 14% under pure shear deformation. In all GBs studied here, failure arises from deconstructing the icosahedra within the GB region under shear deformation. We find that Fe dopant interacts with icosahedra at the GB to facilitate this deconstruction of icosahedra. These results provide significant insight into designing polycrystalline B4C with improved strength and ductility.

3.
Proc Natl Acad Sci U S A ; 113(43): 12088-12093, 2016 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-27733513

RESUMO

Solid-state shock-wave propagation is strongly nonequilibrium in nature and hence rate dependent. Using high-power pulsed-laser-driven shock compression, unprecedented high strain rates can be achieved; here we report the directional amorphization in boron carbide polycrystals. At a shock pressure of 45∼50 GPa, multiple planar faults, slightly deviated from maximum shear direction, occur a few hundred nanometers below the shock surface. High-resolution transmission electron microscopy reveals that these planar faults are precursors of directional amorphization. It is proposed that the shear stresses cause the amorphization and that pressure assists the process by ensuring the integrity of the specimen. Thermal energy conversion calculations including heat transfer suggest that amorphization is a solid-state process. Such a phenomenon has significant effect on the ballistic performance of B4C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...