Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 6624, 2023 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-37857640

RESUMO

Little is currently known about how climate modulates the relationship between plant diversity and soil organic carbon and the mechanisms involved. Yet, this knowledge is of crucial importance in times of climate change and biodiversity loss. Here, we show that plant diversity is positively correlated with soil carbon content and soil carbon-to-nitrogen ratio across 84 grasslands on six continents that span wide climate gradients. The relationships between plant diversity and soil carbon as well as plant diversity and soil organic matter quality (carbon-to-nitrogen ratio) are particularly strong in warm and arid climates. While plant biomass is positively correlated with soil carbon, plant biomass is not significantly correlated with plant diversity. Our results indicate that plant diversity influences soil carbon storage not via the quantity of organic matter (plant biomass) inputs to soil, but through the quality of organic matter. The study implies that ecosystem management that restores plant diversity likely enhances soil carbon sequestration, particularly in warm and arid climates.


Assuntos
Ecossistema , Solo , Carbono , Biodiversidade , Biomassa , Plantas , Nitrogênio
2.
Environ Sci Pollut Res Int ; 30(17): 50883-50895, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36807862

RESUMO

Biomagnetic monitoring increasingly is applied to assess particulate matter (PM) concentrations, mainly using plant leaves sampled in small geographical area and from a limited number of species. Here, the potential of magnetic analysis of urban tree trunk bark to discriminate between PM exposure levels was evaluated and bark magnetic variation was investigated at different spatial scales. Trunk bark was sampled from 684 urban trees of 39 genera in 173 urban green areas across six European cities. Samples were analysed magnetically for the Saturation isothermal remanent magnetisation (SIRM). The bark SIRM reflected well the PM exposure level at city and local scale, as the bark SIRM (i) differed between the cities in accordance with the mean atmospheric PM concentrations and (ii) increased with the cover of roads and industrial area around the trees. Furthermore, with increasing tree circumferences, the SIRM values increased, as a reflection of a tree age effect related to PM accumulation over time. Moreover, bark SIRM was higher at the side of the trunk facing the prevailing wind direction. Significant relationships between SIRM of different genera validate the possibility to combine bark SIRM from different genera to improve sampling resolution and coverage in biomagnetic studies. Thus, the SIRM signal of trunk bark from urban trees is a reliable proxy for atmospheric coarse to fine PM exposure in areas dominated by one PM source, as long as variation caused by genus, circumference and trunk side is taken into account.


Assuntos
Poluentes Atmosféricos , Material Particulado , Poluentes Atmosféricos/análise , Cidades , Monitoramento Ambiental , Fenômenos Magnéticos , Material Particulado/análise , Casca de Planta/química , Folhas de Planta/química , Árvores , Europa (Continente)
3.
Environ Pollut ; 315: 120330, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36274289

RESUMO

To create more resilient cities, it is important that we understand the effects of the global change drivers in cities. Biodiversity-based ecological indicators (EIs) can be used for this, as biodiversity is the basis of ecosystem structure, composition, and function. In previous studies, lichens have been used as EIs to monitor the effects of global change drivers in an urban context, but only in single-city studies. Thus, we currently do not understand how lichens are affected by drivers that work on a broader scale. Therefore, our aim was to quantify the variance in lichen biodiversity-based metrics (taxonomic and trait-based) that can be explained by environmental drivers working on a broad spatial scale, in an urban context where local drivers are superimposed. To this end, we performed an unprecedented effort to sample epiphytic lichens in 219 green spaces across a continental gradient from Portugal to Estonia. Twenty-six broad-scale drivers were retrieved, including air pollution and bio-climatic variables, and their dimensionality reduced by means of a principal component analysis (PCA). Thirty-eight lichen metrics were then modelled against the scores of the first two axes of each PCA, and their variance partitioned into pollution and climate components. For the first time, we determined that 15% of the metric variance was explained by broad-scale drivers, with broad-scale air pollution showing more importance than climate across the majority of metrics. Taxonomic metrics were better explained by air pollution, as expected, while climate did not surpass air pollution in any of the trait-based metric groups. Consequently, 85% of the metric variance was shown to occur at the local scale. This suggests that further work is necessary to decipher the effects of climate change. Furthermore, although drivers working within cities are prevailing, both spatial scales must be considered simultaneously if we are to use lichens as EIs in cities at continental to global scales.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Líquens , Líquens/fisiologia , Ecossistema , Monitoramento Ambiental , Poluição do Ar/análise , Biodiversidade , Poluentes Atmosféricos/análise
4.
FEMS Microbiol Ecol ; 98(10)2022 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-36085374

RESUMO

The phyllosphere harbours a diverse and specific bacterial community, which influences plant health and ecosystem functioning. In this study, we investigated the impact of urban green areas connectivity and size on the composition and diversity of phyllosphere bacterial communities. Hereto, we evaluated the diversity and composition of phyllosphere bacterial communities of 233 Platanus x acerifolia and Acer pseudoplatanus trees in 77 urban green areas throughout 6 European cities. The community composition and diversity significantly differed between cities but only to a limited extent between tree species. We could show that urban intensity correlated significantly with the community composition of phyllosphere bacteria. In particular, a significant correlation was found between the relative abundances for 29 out of the 50 most abundant families and the urban intensity: the abundances of classic phyllosphere families, such as Acetobacteraceae, Planctomycetes, and Beijerinkiaceae, decreased with urban intensity (i.e. more abundant in areas with more green, lower air pollution, and lower temperature), while those related to human activities, such as Enterobacteriaceae and Bacillaceae, increased with urban intensity. The results of this study suggest that phyllosphere bacterial communities in European cities are associated with urban intensity and that effect is mediated by several combined stress factors.


Assuntos
Biodiversidade , Ecossistema , Bactérias/genética , Humanos , Folhas de Planta/microbiologia , Árvores/microbiologia
5.
Ecology ; 103(11): e3806, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35791858

RESUMO

In trait-based ecology, phenotypic variation (PVar) is often quantified with measures expressing average differences between populations standardized in the range 0-1. However, these measures disregard the within-population trait variability. In addition, some of them cannot be partitioned between populations. These aspects can either alter their interpretation or limit their applicability. To overcome these problems, we propose a new measure, the phenotypic dissimilarity (PhD) index, to quantify PVar between populations in scenarios of varying within-population interindividual trait variability. PhD can also quantify within-population PVar while accounting for intraindividual trait variability. Using simulated and real data, we show that using the PhD index becomes important when the within-population trait variability is not negligible, as in all ecological studies. By accounting for within-population trait variability, the PhD index does not overestimate PVar across an environmental gradient compared to other estimators. Traits inherently vary within species. Accounting for such variability is essential to understanding species' phenotypic responses to environmental cues. The proposed PhD index will provide ecologists with a tool for quantifying PVar within species and compare it between species at different levels of biological organization. We provide an R function to calculate the PhD index.


Assuntos
Variação Biológica da População , Ecologia , Fenótipo
6.
Ecology ; 103(9): e3740, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35488300

RESUMO

Urbanization poses threats and opportunities for the biodiversity of wild bees. At the same time, cities can harbor diverse wild bee assemblages, partly due to the unique plant assemblages that provide resources. While bee dietary preferences have been investigated in various studies, bee dietary studies have been conducted mostly in nonurban ecosystems and data based on plant visitation observations or palynological techniques. This data set describes the larval food preferences of four wild bee species (i.e., Chelostoma florisomne, Hylaeus communis, Osmia bicornis, and O. cornuta) common in urban areas in five different European cities (i.e., Antwerp, Belgium; Paris, France; Poznan, Poland; Tartu, Estonia; and Zurich, Switzerland). In addition, the data set describes the larval food preferences of individuals from three wild bee genera (i.e., Chelostoma sp., Hylaeus sp., and Osmia sp.) that could not be identified to the species level. These data were obtained from a Europe-level study aimed at understanding the effects of urbanization on biodiversity across different cities and cityscapes and a Swiss project aimed at understanding the effects of urban ecosystems in wild bee feeding behavior. Wild bees were sampled using standardized trap nests at 80 sites (32 in Zurich and 12 in each of the remaining cities), selected following a double gradient of available habitat at local and landscape scales. Larval pollen was obtained from the bee nests and identified using DNA metabarcoding. The data provide the plant composition at the species or genus level preferred by each bee. These unique data can be used for a wide array of research questions, including urban ecology (e.g., diversity of food sources along urban gradients), bee ecology (characterization of bee feeding preferences), or comparative studies on the urban evolution of behavioral traits between urban and nonurban sites. In addition, the data can be used to inform urban planning and conservation strategies, particularly concerning flower resources (e.g., importance of exotic species and, thus, management activities). This data set can be freely used for noncommercial purposes, and this data paper should be cited if the data is used; we request that collaboration with the data set contact person to be considered if this data set represents an important part of the data analyzed in a study.


Assuntos
Ecossistema , Urbanização , Animais , Abelhas , Biodiversidade , Cidades , Humanos , Larva
7.
Ecol Lett ; 24(11): 2378-2393, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34355467

RESUMO

Genetic differentiation and phenotypic plasticity jointly shape intraspecific trait variation, but their roles differ among traits. In short-lived plants, reproductive traits may be more genetically determined due to their impact on fitness, whereas vegetative traits may show higher plasticity to buffer short-term perturbations. Combining a multi-treatment greenhouse experiment with observational field data throughout the range of a widespread short-lived herb, Plantago lanceolata, we (1) disentangled genetic and plastic responses of functional traits to a set of environmental drivers and (2) assessed how genetic differentiation and plasticity shape observational trait-environment relationships. Reproductive traits showed distinct genetic differentiation that largely determined observational patterns, but only when correcting traits for differences in biomass. Vegetative traits showed higher plasticity and opposite genetic and plastic responses, masking the genetic component underlying field-observed trait variation. Our study suggests that genetic differentiation may be inferred from observational data only for the traits most closely related to fitness.


Assuntos
Máscaras , Plantago , Adaptação Fisiológica , Biomassa , Fenótipo
8.
Data Brief ; 37: 107243, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34307807

RESUMO

This article summarizes the data of a survey of flowering plants in 80 sites in five European cities and urban agglomerations (Antwerp, Belgium; greater Paris, France; Poznan, Poland; Tartu, Estonia; and Zurich, Switzerland). Sampling sites were selected based on a double orthogonal gradient of size and connectivity and were urban green areas (e.g. parks, cemeteries). To characterize the flowering plants, two sampling methodologies were applied between April and July 2018. First, a floristic inventory of the occurrence of all flowering plants in the five cities. Second, flower counts in sampling plots of standardized size (1 m2) only in Zurich. We sampled 2146 plant species (contained in 824 genera and 137 families) and across the five cities. For each plant species, we provide its origin status (i.e. whether the plants are native from Europe or not) and 11 functional traits potentially important for plant-pollinator interactions. For each study site, we provide the number of species, genera, and families recorded, the Shannon diversity as well as the proportion of exotic species, herbs, shrubs and trees. In addition, we provide information on the patch size, connectivity, and urban intensity, using four remote sensing-based proxies measured at 100- and 800-m radii.

9.
New Phytol ; 231(2): 763-776, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33507570

RESUMO

The arbuscular mycorrhizal (AM) fungi are a globally distributed group of soil organisms that play critical roles in ecosystem function. However, the ecological niches of individual AM fungal taxa are poorly understood. We collected > 300 soil samples from natural ecosystems worldwide and modelled the realised niches of AM fungal virtual taxa (VT; approximately species-level phylogroups). We found that environmental and spatial variables jointly explained VT distribution worldwide, with temperature and pH being the most important abiotic drivers, and spatial effects generally occurring at local to regional scales. While dispersal limitation could explain some variation in VT distribution, VT relative abundance was almost exclusively driven by environmental variables. Several environmental and spatial effects on VT distribution and relative abundance were correlated with phylogeny, indicating that closely related VT exhibit similar niche optima and widths. Major clades within the Glomeraceae exhibited distinct niche optima, Acaulosporaceae generally had niche optima in low pH and low temperature conditions, and Gigasporaceae generally had niche optima in high precipitation conditions. Identification of the realised niche space occupied by individual and phylogenetic groups of soil microbial taxa provides a basis for building detailed hypotheses about how soil communities respond to gradients and manipulation in ecosystems worldwide.


Assuntos
Micorrizas , Ecossistema , Fungos , Concentração de Íons de Hidrogênio , Filogenia , Solo , Microbiologia do Solo , Temperatura
10.
New Phytol ; 229(1): 308-322, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33411342

RESUMO

The optimal partitioning theory predicts that plants of a given species acclimate to different environments by allocating a larger proportion of biomass to the organs acquiring the most limiting resource. Are similar patterns found across species adapted to environments with contrasting levels of abiotic stress? We tested the optimal partitioning theory by analysing how fractional biomass allocation to leaves, stems and roots differed between woody species with different tolerances of shade and drought in plants of different age and size (seedlings to mature trees) using a global dataset including 604 species. No overarching biomass allocation patterns at different tolerance values across species were found. Biomass allocation varied among functional types as a result of phenological (deciduous vs evergreen broad-leaved species) and broad phylogenetical (angiosperms vs gymnosperms) differences. Furthermore, the direction of biomass allocation responses between tolerant and intolerant species was often opposite to that predicted by the optimal partitioning theory. We conclude that plant functional type is the major determinant of biomass allocation in woody species. We propose that interactions between plant functional type, ontogeny and species-specific stress tolerance adaptations allow woody species with different shade and drought tolerances to display multiple biomass partitioning strategies.


Assuntos
Secas , Árvores , Biomassa , Folhas de Planta , Raízes de Plantas , Plântula
11.
Ecol Evol ; 11(24): 17744-17761, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003636

RESUMO

Biotic and abiotic factors interact with dominant plants-the locally most frequent or with the largest coverage-and nondominant plants differently, partially because dominant plants modify the environment where nondominant plants grow. For instance, if dominant plants compete strongly, they will deplete most resources, forcing nondominant plants into a narrower niche space. Conversely, if dominant plants are constrained by the environment, they might not exhaust available resources but instead may ameliorate environmental stressors that usually limit nondominants. Hence, the nature of interactions among nondominant species could be modified by dominant species. Furthermore, these differences could translate into a disparity in the phylogenetic relatedness among dominants compared to the relatedness among nondominants. By estimating phylogenetic dispersion in 78 grasslands across five continents, we found that dominant species were clustered (e.g., co-dominant grasses), suggesting dominant species are likely organized by environmental filtering, and that nondominant species were either randomly assembled or overdispersed. Traits showed similar trends for those sites (<50%) with sufficient trait data. Furthermore, several lineages scattered in the phylogeny had more nondominant species than expected at random, suggesting that traits common in nondominants are phylogenetically conserved and have evolved multiple times. We also explored environmental drivers of the dominant/nondominant disparity. We found different assembly patterns for dominants and nondominants, consistent with asymmetries in assembly mechanisms. Among the different postulated mechanisms, our results suggest two complementary hypotheses seldom explored: (1) Nondominant species include lineages adapted to thrive in the environment generated by dominant species. (2) Even when dominant species reduce resources to nondominant ones, dominant species could have a stronger positive effect on some nondominants by ameliorating environmental stressors affecting them, than by depleting resources and increasing the environmental stress to those nondominants. These results show that the dominant/nondominant asymmetry has ecological and evolutionary consequences fundamental to understand plant communities.

12.
New Phytol ; 229(3): 1354-1362, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32989754

RESUMO

Tolerance of abiotic stress in woody plants is known to be constrained by biological trade-offs between different forms of stress, especially shade and drought. However, there is still considerable uncertainty on the relationship between tolerances and the limits on tolerance combinations. Using the most extensive database available on shade, drought, waterlogging and cold tolerance for 799 northern hemisphere woody species, we determined the number of dimensions needed to summarise their tolerance combinations, and the best trade-off model among those currently available, for description of the interdependence between tolerances. Two principal component analysis (PCA) dimensions summarised stress tolerance combinations. They defined a triangular stress tolerance space (STS). The first STS dimension reflected segregation between drought-tolerant and waterlogging-tolerant species. The second reflected shade tolerance, which is independent of the other tolerances. Cold tolerance scaled weakly with both dimensions. Tolerance combinations across the species in the database were limited by boundary-line trade-offs. The STS reconciles all major theories about trade-offs between abiotic stress tolerances, providing a unified trade-off model and a set of coordinates that can be used to examine how other aspects of plant biology, such as plant functional traits, change within the limits of abiotic stress tolerance.


Assuntos
Secas , Estresse Fisiológico , Meio Ambiente , Plantas , Madeira
13.
Proc Natl Acad Sci U S A ; 117(8): 4218-4227, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32034102

RESUMO

When plants establish outside their native range, their ability to adapt to the new environment is influenced by both demography and dispersal. However, the relative importance of these two factors is poorly understood. To quantify the influence of demography and dispersal on patterns of genetic diversity underlying adaptation, we used data from a globally distributed demographic research network comprising 35 native and 18 nonnative populations of Plantago lanceolata Species-specific simulation experiments showed that dispersal would dilute demographic influences on genetic diversity at local scales. Populations in the native European range had strong spatial genetic structure associated with geographic distance and precipitation seasonality. In contrast, nonnative populations had weaker spatial genetic structure that was not associated with environmental gradients but with higher within-population genetic diversity. Our findings show that dispersal caused by repeated, long-distance, human-mediated introductions has allowed invasive plant populations to overcome environmental constraints on genetic diversity, even without strong demographic changes. The impact of invasive plants may, therefore, increase with repeated introductions, highlighting the need to constrain future introductions of species even if they already exist in an area.


Assuntos
Fluxo Gênico , Variação Genética , Plantago/genética , Demografia , Espécies Introduzidas , Filogenia , Plantago/química
14.
New Phytol ; 227(5): 1362-1375, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32034954

RESUMO

The popular dual definition of lichen symbiosis is under question with recent findings of additional microbial partners living within the lichen body. Here we compare the distribution and co-occurrence patterns of lichen photobiont and recently described secondary fungus (Cyphobasidiales yeast) to evaluate their dependency on lichen host fungus (mycobiont). We sequenced the nuclear internal transcribed spacer (ITS) strands for mycobiont, photobiont, and yeast from six widespread northern hemisphere epiphytic lichen species collected from 25 sites in Switzerland and Estonia. Interaction network analyses and multivariate analyses were conducted on operational taxonomic units based on ITS sequence data. Our study demonstrates the frequent presence of cystobasidiomycete yeasts in studied lichens and shows that they are much less mycobiont-specific than the photobionts. Individuals of different lichen species growing on the same tree trunk consistently hosted the same or closely related mycobiont-specific Trebouxia lineage over geographic distances while the cystobasidiomycete yeasts were unevenly distributed over the study area - contrasting communities were found between Estonia and Switzerland. These results contradict previous findings of high mycobiont species specificity of Cyphobasidiales yeast at large geographic scales. Our results suggest that the yeast might not be as intimately associated with the symbiosis as is the photobiont.


Assuntos
Líquens , Filogenia , Saccharomyces cerevisiae , Suíça , Simbiose
15.
New Phytol ; 225(1): 183-195, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479517

RESUMO

Fast stomatal reactions enable plants to successfully cope with a constantly changing environment yet there is an ongoing debate on the stomatal regulation mechanisms in basal plant groups. We measured stomatal morphological parameters in 29 fern and allied species from temperate to tropical biomes and two outgroup angiosperm species. Stomatal dynamic responses to environmental drivers were measured in 16 ferns and the two angiosperms using a gas-exchange system. Principal components analyses were used to further reveal the structure-function relationships in stomata. We show a > 10-fold variation for stomatal opening delays and 20-fold variation for stomatal closing delays in ferns. Across species, stomatal responses to vapor pressure deficit (VPD) were the fastest, while light and [CO2 ] responses were slower. In most cases the outgroup species' reaction speeds to changes in environmental variables were similar to those of ferns. Correlations between stomatal response rate and size were apparent for stomatal opening in light and low [CO2 ] while not evident for closing reactions and changes in VPD. No correlations between stomatal density and response speed were observed. Together, this study demonstrates different mechanisms controlling stomatal reactions in ferns at different environmental stimuli, which should be considered in future studies relating stomatal morphology and function.


Assuntos
Dióxido de Carbono/metabolismo , Gleiquênias/fisiologia , Magnoliopsida/fisiologia , Estômatos de Plantas/fisiologia , Ecossistema , Meio Ambiente , Gleiquênias/anatomia & histologia , Gleiquênias/efeitos da radiação , Umidade , Luz , Magnoliopsida/anatomia & histologia , Magnoliopsida/efeitos da radiação , Estômatos de Plantas/anatomia & histologia , Estômatos de Plantas/efeitos da radiação , Estresse Fisiológico , Pressão de Vapor
16.
Sci Rep ; 9(1): 7917, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31114013

RESUMO

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has been fixed in the paper.

17.
Sci Rep ; 9(1): 6443, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-31015512

RESUMO

Although many studies have shown that species richness decreases from low to high latitudes (the Latitudinal Diversity Gradient), little is known about the relationship between latitude and phylogenetic diversity. Here we examine global latitudinal patterns of phylogenetic diversity using a dataset of 459 woody and 589 herbaceous plant communities. We analysed the relationships between community phylogenetic diversity, latitude, biogeographic realm and vegetation type. Using the most recent global megaphylogeny for seed plants and the standardised effect sizes of the phylogenetic diversity metrics 'mean pairwise distance' (SESmpd) and 'mean nearest taxon distance' (SESmntd), we found that species were more closely-related at low latitudes in woody communities. In herbaceous communities, species were more closely-related at high latitudes than at intermediate latitudes, and the strength of this effect depended on biogeographic realm and vegetation type. Possible causes of this difference are contrasting patterns of speciation and dispersal. Most woody lineages evolved in the tropics, with many gymnosperms but few angiosperms adapting to high latitudes. In contrast, the recent evolution of herbaceous lineages such as grasses in young habitat types may drive coexistence of closely-related species at high latitudes. Our results show that high species richness commonly observed at low latitudes is not associated with high phylogenetic diversity.


Assuntos
Biodiversidade , Desenvolvimento Vegetal , Plantas/classificação , Filogenia , Clima Tropical
19.
Phytochemistry ; 147: 80-88, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29304384

RESUMO

Diterpenoids constitute an important part of oleoresin in conifer needles, but the environmental and genetic controls on diterpenoid composition are poorly known. We studied the presence of diterpenoids in four pine populations spanning an extensive range of nitrogen (N) availability. In most samples, isoabienol was the main diterpenoid. Additionally, low contents of (Z)-biformene, abietadiene isomers, manoyl oxide isomers, labda-7,13,14-triene and labda-7,14-dien-13-ol were quantified in pine needles. According to the occurrence and content of diterpenoids it was possible to distinguish 'non diterpenoid pines', 'high isoabienol pines', 'manoyl oxide - isoabienol pines' and 'other diterpenoid pines'. 'Non diterpenoid pines', 'high isoabienol pines' and 'other diterpenoid pines' were characteristic to the dry forest, yet the majority of pines (>80%) of the bog Laeva represented 'high isoabienol pines'. 'Manoyl oxide - isoabienol pines' were present only in the wet sites. Additionally, orthogonal partial least-squares analysis showed, that in the bogs foliar nitrogen content per dry mass (NM) correlated to diterpenoids. Significant correlations existed between abietadienes, isoabienol and foliar NM in 'manoyl oxide - isoabienol pines', and chemotypic variation was also associated by population genetic distance estimated by nuclear microsatellite markers. Previously, the presence of low and high Δ-3-carene pines has been demonstrated, but the results of the current study indicate that also diterpenoids form an independent axis of chemotypic differentiation. Further studies are needed to understand whether the enhanced abundance of diterpenoids in wetter sites reflects a phenotypic or genotypic response.


Assuntos
Diterpenos/análise , Naftóis/química , Pinus/química , Diterpenos/química , Conformação Molecular , Fenótipo
20.
J Exp Bot ; 68(7): 1639-1653, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28419340

RESUMO

Mesophyll conductance is thought to be an important photosynthetic limitation in gymnosperms, but they currently constitute the most understudied plant group in regard to the extent to which photosynthesis and intrinsic water use efficiency are limited by mesophyll conductance. A comprehensive analysis of leaf gas exchange, photosynthetic limitations, mesophyll conductance (calculated by three methods previously used for across-species comparisons), and the underlying ultra-anatomical, morphological and chemical traits in 11 gymnosperm species varying in evolutionary history was performed to gain insight into the evolution of structural and physiological controls on photosynthesis at the lower return end of the leaf economics spectrum. Two primitive herbaceous species were included in order to provide greater evolutionary context. Low mesophyll conductance was the main limiting factor of photosynthesis in the majority of species. The strongest sources of limitation were extremely thick mesophyll cell walls, high chloroplast thickness and variation in chloroplast shape and size, and the low exposed surface area of chloroplasts per unit leaf area. In gymnosperms, the negative relationship between net assimilation per mass and leaf mass per area reflected an increased mesophyll cell wall thickness, whereas the easy-to-measure integrative trait of leaf mass per area failed to predict the underlying ultrastructural traits limiting mesophyll conductance.


Assuntos
Dióxido de Carbono/metabolismo , Cycadopsida/metabolismo , Células do Mesofilo/metabolismo , Fotossíntese , Parede Celular/ultraestrutura , Cycadopsida/citologia , Células do Mesofilo/citologia , Folhas de Planta/citologia , Folhas de Planta/metabolismo , Selaginellaceae/citologia , Selaginellaceae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...