Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38396995

RESUMO

RNA-binding proteins are emerging as critical modulators of oncogenic cell transformation, malignancy and therapy resistance. We have previously found that the RNA-binding protein Cold Shock Domain containing protein E1 (CSDE1) promotes invasion and metastasis of melanoma, the deadliest form of skin cancer and also a highly heterogeneous disease in need of predictive biomarkers and druggable targets. Here, we design a monoclonal antibody useful for IHC in the clinical setting and use it to evaluate the prognosis potential of CSDE1 in an exploratory cohort of 149 whole tissue sections including benign nevi and primary tumors and metastasis from melanoma patients. Contrary to expectations for an oncoprotein, we observed a global decrease in CSDE1 levels with increasing malignancy. However, the CSDE1 cytoplasmic/nuclear ratio exhibited a positive correlation with adverse clinical features of primary tumors and emerged as a robust indicator of progression free survival in cutaneous melanoma, highlighting the potential of CSDE1 as a biomarker of prognosis. Our findings provide a novel feature for prognosis assessment and highlight the intricacies of RNA-binding protein dynamics in cancer progression.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Biomarcadores/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Melanoma/diagnóstico , Melanoma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/metabolismo , Prognóstico
2.
Eur J Hum Genet ; 30(12): 1439-1443, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36192439

RESUMO

An important fraction of patients with rare disorders remains with no clear genetic diagnostic, even after whole-exome or whole-genome sequencing, posing a difficulty in giving adequate treatment and genetic counseling. The analysis of genomic data in rare disorders mostly considers the presence of single gene variants in coding regions that follow a concrete monogenic mode of inheritance. A digenic inheritance, with variants in two functionally-related genes in the same individual, is a plausible alternative that might explain the genetic basis of the disease in some cases. In this case, digenic disease combinations should be absent or underrepresented in healthy individuals. We develop a framework to evaluate the significance of digenic combinations and test its statistical power in different scenarios. We suggest that this approach will be relevant with the advent of new sequencing efforts including hundreds of thousands of samples.


Assuntos
Exoma , Herança Multifatorial , Humanos , Análise de Sequência de DNA , Sequenciamento do Exoma , Doenças Raras/genética
3.
Hum Genet ; 141(10): 1673-1693, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35249174

RESUMO

The occurrence of natural variation in human microRNAs has been the focus of numerous studies during the last 20 years. Most of them have been focused on the role of specific mutations in disease, while a minor proportion seek to analyse microRNA diversity in the genomes of human populations. We analyse the latest human microRNA annotations in the light of the most updated catalogue of genetic variation provided by the 1000 Genomes Project. By means of the in silico analysis of microRNA genetic variation we show that the level of evolutionary constraint of these sequences is governed by the interplay of different factors, like their evolutionary age or genomic location. The role of mutations in the shaping of microRNA-driven regulatory interactions is emphasized with the acknowledgement that, while the whole microRNA sequence is highly conserved, the seed region shows a pattern of higher genetic diversity that appears to be caused by the dramatic frequency shifts of a fraction of human microRNAs. We highlight the participation of these microRNAs in population-specific processes by identifying that not only the seed, but also the loop, are particularly differentiated regions among human populations. The quantitative computational comparison of signatures of population differentiation showed that candidate microRNAs with the largest differences are enriched in variants implicated in gene expression levels (eQTLs), selective sweeps and pathological processes. We explore the implication of these evolutionary-driven microRNAs and their SNPs in human diseases, such as different types of cancer, and discuss their role in population-specific disease risk.


Assuntos
MicroRNAs , Variação Genética , Genômica , Humanos , MicroRNAs/genética , Mutação , Polimorfismo de Nucleotídeo Único , Seleção Genética
4.
Front Genet ; 12: 714491, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34646300

RESUMO

The ability of detecting adaptive (positive) selection in the genome has opened the possibility of understanding the genetic basis of population-specific adaptations genome-wide. Here, we present the analysis of recent selective sweeps, specifically in the X chromosome, in human populations from the third phase of the 1,000 Genomes Project using three different haplotype-based statistics. We describe instances of recent positive selection that fit the criteria of hard or soft sweeps, and detect a higher number of events among sub-Saharan Africans than non-Africans (Europe and East Asia). A global enrichment of neural-related processes is observed and numerous genes related to fertility appear among the top candidates, reflecting the importance of reproduction in human evolution. Commonalities with previously reported genes under positive selection are found, while particularly strong new signals are reported in specific populations or shared across different continental groups. We report an enrichment of signals in genes that escape X chromosome inactivation, which may contribute to the differentiation between sexes. We also provide evidence of a widespread presence of soft-sweep-like signatures across the chromosome and a global enrichment of highly scoring regions that overlap potential regulatory elements. Among these, enhancers-like signatures seem to present putative signals of positive selection which might be in concordance with selection in their target genes. Also, particularly strong signals appear in regulatory regions that show differential activities, which might point to population-specific regulatory adaptations.

5.
Genome Res ; 31(8): 1325-1336, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34290042

RESUMO

Tissue function and homeostasis reflect the gene expression signature by which the combination of ubiquitous and tissue-specific genes contribute to the tissue maintenance and stimuli-responsive function. Enhancers are central to control this tissue-specific gene expression pattern. Here, we explore the correlation between the genomic location of enhancers and their role in tissue-specific gene expression. We find that enhancers showing tissue-specific activity are highly enriched in intronic regions and regulate the expression of genes involved in tissue-specific functions, whereas housekeeping genes are more often controlled by intergenic enhancers, common to many tissues. Notably, an intergenic-to-intronic active enhancers continuum is observed in the transition from developmental to adult stages: the most differentiated tissues present higher rates of intronic enhancers, whereas the lowest rates are observed in embryonic stem cells. Altogether, our results suggest that the genomic location of active enhancers is key for the tissue-specific control of gene expression.


Assuntos
Células-Tronco Embrionárias , Elementos Facilitadores Genéticos , Células-Tronco Embrionárias/metabolismo , Genes Essenciais , Íntrons/genética
6.
BMC Genet ; 21(Suppl 1): 108, 2020 10 22.
Artigo em Inglês | MEDLINE | ID: mdl-33092534

RESUMO

BACKGROUND: In the process of adaptation of humans to their environment, positive or adaptive selection has played a main role. Positive selection has, however, been under-studied in African populations, despite their diversity and importance for understanding human history. RESULTS: Here, we have used 119 available whole-genome sequences from five Ethiopian populations (Amhara, Oromo, Somali, Wolayta and Gumuz) to investigate the modes and targets of positive selection in this part of the world. The site frequency spectrum-based test SFselect was applied to idfentify a wide range of events of selection (old and recent), and the haplotype-based statistic integrated haplotype score to detect more recent events, in each case with evaluation of the significance of candidate signals by extensive simulations. Additional insights were provided by considering admixture proportions and functional categories of genes. We identified both individual loci that are likely targets of classic sweeps and groups of genes that may have experienced polygenic adaptation. We found population-specific as well as shared signals of selection, with folate metabolism and the related ultraviolet response and skin pigmentation standing out as a shared pathway, perhaps as a response to the high levels of ultraviolet irradiation, and in addition strong signals in genes such as IFNA, MRC1, immunoglobulins and T-cell receptors which contribute to defend against pathogens. CONCLUSIONS: Signals of positive selection were detected in Ethiopian populations revealing novel adaptations in East Africa, and abundant targets for functional follow-up.


Assuntos
Adaptação Biológica/genética , Genética Populacional , Seleção Genética , População Negra/genética , Simulação por Computador , Etiópia , Ácido Fólico/metabolismo , Haplótipos , Humanos , Desequilíbrio de Ligação , Aprendizado de Máquina , Modelos Genéticos , Herança Multifatorial , Pigmentação da Pele/genética
7.
Sci Rep ; 10(1): 16134, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999407

RESUMO

The Roma people are the largest transnational ethnic minority in Europe and can be considered the last human migration of South Asian origin into the continent. They left Northwest India approximately 1,000 years ago, reaching the Balkan Peninsula around the twelfth century and Romania in the fourteenth century. Here, we analyze whole-genome sequencing data of 40 Roma and 40 non-Roma individuals from Romania. We performed a genome-wide scan of selection comparing Roma, their local host population, and a Northwestern Indian population, to identify the selective pressures faced by the Roma mainly after they settled in Europe. We identify under recent selection several pathways implicated in immune responses, among them cellular metabolism pathways known to be rewired after immune stimulation. We validated the interaction between PIK3-mTOR-HIF-1α and cytokine response influenced by bacterial and fungal infections. Our results point to a significant role of these pathways for host defense against the most prevalent pathogens in Europe during the last millennium.


Assuntos
Imunidade/genética , Roma (Grupo Étnico)/genética , Adulto , Povo Asiático/genética , Península Balcânica , Etnicidade/genética , Feminino , Efeito Fundador , Genética Populacional/métodos , Migração Humana , Humanos , Índia , Masculino , Grupos Minoritários , Roma (Grupo Étnico)/etnologia , Romênia , Seleção Genética , População Branca/genética , Sequenciamento Completo do Genoma/métodos
8.
NAR Genom Bioinform ; 2(3): lqaa061, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33575612

RESUMO

After diverging, each chimpanzee subspecies has been the target of unique selective pressures. Here, we employ a machine learning approach to classify regions as under positive selection or neutrality genome-wide. The regions determined to be under selection reflect the unique demographic and adaptive history of each subspecies. The results indicate that effective population size is important for determining the proportion of the genome under positive selection. The chimpanzee subspecies share signals of selection in genes associated with immunity and gene regulation. With these results, we have created a selection map for each population that can be displayed in a genome browser (www.hsb.upf.edu/chimp_browser). This study is the first to use a detailed demographic history and machine learning to map selection genome-wide in chimpanzee. The chimpanzee selection map will improve our understanding of the impact of selection on closely related subspecies and will empower future studies of chimpanzee.

9.
Nat Biotechnol ; 37(12): 1466-1470, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31792410

RESUMO

Multiple sequence alignments (MSAs) are used for structural1,2 and evolutionary predictions1,2, but the complexity of aligning large datasets requires the use of approximate solutions3, including the progressive algorithm4. Progressive MSA methods start by aligning the most similar sequences and subsequently incorporate the remaining sequences, from leaf to root, based on a guide tree. Their accuracy declines substantially as the number of sequences is scaled up5. We introduce a regressive algorithm that enables MSA of up to 1.4 million sequences on a standard workstation and substantially improves accuracy on datasets larger than 10,000 sequences. Our regressive algorithm works the other way around from the progressive algorithm and begins by aligning the most dissimilar sequences. It uses an efficient divide-and-conquer strategy to run third-party alignment methods in linear time, regardless of their original complexity. Our approach will enable analyses of extremely large genomic datasets such as the recently announced Earth BioGenome Project, which comprises 1.5 million eukaryotic genomes6.


Assuntos
Algoritmos , Alinhamento de Sequência/métodos , Bases de Dados Genéticas , Eucariotos/genética , Genômica/métodos , Análise de Regressão
10.
Biol Direct ; 14(1): 17, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31481097

RESUMO

BACKGROUND: Determining the factors involved in the likelihood of a gene being under adaptive selection is still a challenging goal in Evolutionary Biology. Here, we perform an evolutionary analysis of the human metabolic genes to explore the associations between network structure and the presence and strength of natural selection in the genes whose products are involved in metabolism. Purifying and positive selection are estimated at interspecific (among mammals) and intraspecific (among human populations) levels, and the connections between enzymatic reactions are differentiated between incoming (in-degree) and outgoing (out-degree) links. RESULTS: We confirm that purifying selection has been stronger in highly connected genes. Long-term positive selection has targeted poorly connected enzymes, whereas short-term positive selection has targeted different enzymes depending on whether the selective sweep has reached fixation in the population: genes under a complete selective sweep are poorly connected, whereas those under an incomplete selective sweep have high out-degree connectivity. The last steps of pathways are more conserved due to stronger purifying selection, with long-term positive selection targeting preferentially enzymes that catalyze the first steps. However, short-term positive selection has targeted enzymes that catalyze the last steps in the metabolic network. Strong signals of positive selection have been found for metabolic processes involved in lipid transport and membrane fluidity and permeability. CONCLUSIONS: Our analysis highlights the importance of analyzing the same biological system at different evolutionary timescales to understand the evolution of metabolic genes and of distinguishing between incoming and outgoing links in a metabolic network. Short-term positive selection has targeted enzymes with a different connectivity profile depending on the completeness of the selective sweep, while long-term positive selection has targeted genes with fewer connections that code for enzymes that catalyze the first steps in the network. REVIEWERS: This article was reviewed by Diamantis Sellis and Brandon Invergo.


Assuntos
Evolução Molecular , Mamíferos/genética , Redes e Vias Metabólicas/genética , Seleção Genética , Animais , Humanos , Mamíferos/metabolismo
11.
PLoS One ; 13(12): e0208782, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30550546

RESUMO

Metabolic networks comprise thousands of enzymatic reactions functioning in a controlled manner and have been shaped by natural selection. Thanks to the genome data, the footprints of adaptive (positive) selection are detectable, and the strength of purifying selection can be measured. This has made possible to know where, in the metabolic network, adaptive selection has acted and where purifying selection is more or less strong and efficient. We have carried out a comprehensive molecular evolutionary study of all the genes involved in the human metabolism. We investigated the type and strength of the selective pressures that acted on the enzyme-coding genes belonging to metabolic pathways during the divergence of primates and rodents. Then, we related those selective pressures to the functional and topological characteristics of the pathways. We have used DNA sequences of all enzymes (956) of the metabolic pathways comprised in the HumanCyc database, using genome data for humans and five other mammalian species. We have found that the evolution of metabolic genes is primarily constrained by the layer of the metabolism in which the genes participate: while genes encoding enzymes of the inner core of metabolism are much conserved, those encoding enzymes participating in the outer layer, mediating the interaction with the environment, are evolutionarily less constrained and more plastic, having experienced faster functional evolution. Genes that have been targeted by adaptive selection are endowed by higher out-degree centralities than non-adaptive genes, while genes with high in-degree centralities are under stronger purifying selection. When the position along the pathway is considered, a funnel-like distribution of the strength of the purifying selection is found. Genes at bottom positions are highly preserved by purifying selection, whereas genes at top positions, catalyzing the first steps, are open to evolutionary changes. These results show how functional and topological characteristics of metabolic pathways contribute to shape the patterns of evolutionary pressures driven by natural selection and how pathway network structure matters in the evolutionary process that shapes the evolution of the system.


Assuntos
Evolução Molecular , Metabolismo/genética , Animais , Enzimas/genética , Enzimas/metabolismo , Humanos , Mamíferos/genética , Mamíferos/metabolismo
12.
Front Immunol ; 9: 636, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29867916

RESUMO

Common variable immunodeficiency (CVID) is the most frequent symptomatic primary immunodeficiency characterized by recurrent infections, hypogammaglobulinemia and poor response to vaccines. Its diagnosis is made based on clinical and immunological criteria, after exclusion of other diseases that can cause similar phenotypes. Currently, less than 20% of cases of CVID have a known underlying genetic cause. We have analyzed whole-exome sequencing and copy number variants data of 36 children and adolescents diagnosed with CVID and healthy relatives to estimate the proportion of monogenic cases. We have replicated an association of CVID to p.C104R in TNFRSF13B and reported the second case of homozygous patient to date. Our results also identify five causative genetic variants in LRBA, CTLA4, NFKB1, and PIK3R1, as well as other very likely causative variants in PRKCD, MAPK8, or DOCK8 among others. We experimentally validate the effect of the LRBA stop-gain mutation which abolishes protein production and downregulates the expression of CTLA4, and of the frameshift indel in CTLA4 producing expression downregulation of the protein. Our results indicate a monogenic origin of at least 15-24% of the CVID cases included in the study. The proportion of monogenic patients seems to be lower in CVID than in other PID that have also been analyzed by whole exome or targeted gene panels sequencing. Regardless of the exact proportion of CVID monogenic cases, other genetic models have to be considered for CVID. We propose that because of its prevalence and other features as intermediate penetrancies and phenotypic variation within families, CVID could fit with other more complex genetic scenarios. In particular, in this work, we explore the possibility of CVID being originated by an oligogenic model with the presence of heterozygous mutations in interacting proteins or by the accumulation of detrimental variants in particular immunological pathways, as well as perform association tests to detect association with rare genetic functional variation in the CVID cohort compared to healthy controls.


Assuntos
Antígeno CTLA-4/genética , Imunodeficiência de Variável Comum/genética , Genótipo , Mutação/genética , Proteína Transmembrana Ativadora e Interagente do CAML/genética , Adolescente , Células Cultivadas , Criança , Pré-Escolar , Estudos de Coortes , Estudos de Associação Genética , Predisposição Genética para Doença , Humanos , Leucócitos Mononucleares/fisiologia , Ativação Linfocitária , Modelos Biológicos , Sequenciamento do Exoma
14.
Genome Biol Evol ; 10(4): 1132-1138, 2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29635458

RESUMO

During the demographic history of the Pan clade, there has been gene-flow between species, likely >200,000 years ago. Bonobo haplotypes in three subspecies of chimpanzee have been identified to be segregating in modern-day chimpanzee populations, suggesting that these haplotypes, with increased differentiation, may be a target of natural selection. Here, we investigate signatures of adaptive introgression within the bonobo-like haplotypes in chimpanzees using site frequency spectrum-based tests. We find evidence for subspecies-specific adaptations in introgressed regions involved with male reproduction in central chimpanzees, the immune system in eastern chimpanzees, female reproduction and the nervous system in Nigeria-Cameroon chimpanzees. Furthermore, our results indicate signatures of balancing selection in some of the putatively introgressed regions. This might be the product of long-term balancing selection resulting in a similar genomic signature as introgression, or possibly balancing selection acting on alleles reintroduced through gene flow.


Assuntos
Genética Populacional , Genoma/genética , Pan troglodytes/genética , Seleção Genética/genética , Animais , Feminino , Genômica , Haplótipos/genética , Humanos , Masculino , Pan paniscus/genética
15.
Nucleic Acids Res ; 46(D1): D1003-D1010, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29059408

RESUMO

The 1000 Genomes Project (1000GP) represents the most comprehensive world-wide nucleotide variation data set so far in humans, providing the sequencing and analysis of 2504 genomes from 26 populations and reporting >84 million variants. The availability of this sequence data provides the human lineage with an invaluable resource for population genomics studies, allowing the testing of molecular population genetics hypotheses and eventually the understanding of the evolutionary dynamics of genetic variation in human populations. Here we present PopHuman, a new population genomics-oriented genome browser based on JBrowse that allows the interactive visualization and retrieval of an extensive inventory of population genetics metrics. Efficient and reliable parameter estimates have been computed using a novel pipeline that faces the unique features and limitations of the 1000GP data, and include a battery of nucleotide variation measures, divergence and linkage disequilibrium parameters, as well as different tests of neutrality, estimated in non-overlapping windows along the chromosomes and in annotated genes for all 26 populations of the 1000GP. PopHuman is open and freely available at http://pophuman.uab.cat.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genética Populacional , Genoma Humano , Cromossomos Humanos , Genes , Genômica , Humanos
16.
Gigascience ; 6(11): 1-6, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29092041

RESUMO

The chimpanzee is arguably the most important species for the study of human origins. A key resource for these studies is a high-quality reference genome assembly; however, as with most mammalian genomes, the current iteration of the chimpanzee reference genome assembly is highly fragmented. In the current iteration of the chimpanzee reference genome assembly (Pan_tro_2.1.4), the sequence is scattered across more then 183 000 contigs, incorporating more than 159 000 gaps, with a genome-wide contig N50 of 51 Kbp. In this work, we produce an extensive and diverse array of sequencing datasets to rapidly assemble a new chimpanzee reference that surpasses previous iterations in bases represented and organized in large scaffolds. To this end, we show substantial improvements over the current release of the chimpanzee genome (Pan_tro_2.1.4) by several metrics, such as increased contiguity by >750% and 300% on contigs and scaffolds, respectively, and closure of 77% of gaps in the Pan_tro_2.1.4 assembly gaps spanning >850 Kbp of the novel coding sequence based on RNASeq data. We further report more than 2700 genes that had putatively erroneous frame-shift predictions to human in Pan_tro_2.1.4 and show a substantial increase in the annotation of repetitive elements. We apply a simple 3-way hybrid approach to considerably improve the reference genome assembly for the chimpanzee, providing a valuable resource for the study of human origins. Furthermore, we produce extensive sequencing datasets that are all derived from the same cell line, generating a broad non-human benchmark dataset.


Assuntos
Mapeamento de Sequências Contíguas/normas , Genoma , Genômica/normas , Anotação de Sequência Molecular/normas , Pan troglodytes/genética , Sequenciamento Completo do Genoma/normas , Animais , Mapeamento de Sequências Contíguas/métodos , Genômica/métodos , Anotação de Sequência Molecular/métodos , Padrões de Referência , Sequenciamento Completo do Genoma/métodos
17.
Hum Genet ; 136(5): 499-510, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28444560

RESUMO

We present 42 new Y-chromosomal sequences from diverse Indian tribal and non-tribal populations, including the Jarawa and Onge from the Andaman Islands, which are analysed within a calibrated Y-chromosomal phylogeny incorporating South Asian (in total 305 individuals) and worldwide (in total 1286 individuals) data from the 1000 Genomes Project. In contrast to the more ancient ancestry in the South than in the North that has been claimed, we detected very similar coalescence times within Northern and Southern non-tribal Indian populations. A closest neighbour analysis in the phylogeny showed that Indian populations have an affinity towards Southern European populations and that the time of divergence from these populations substantially predated the Indo-European migration into India, probably reflecting ancient shared ancestry rather than the Indo-European migration, which had little effect on Indian male lineages. Among the tribal populations, the Birhor (Austro-Asiatic-speaking) and Irula (Dravidian-speaking) are the nearest neighbours of South Asian non-tribal populations, with a common origin in the last few millennia. In contrast, the Riang (Tibeto-Burman-speaking) and Andamanese have their nearest neighbour lineages in East Asia. The Jarawa and Onge shared haplogroup D lineages with each other within the last ~7000 years, but had diverged from Japanese haplogroup D Y-chromosomes ~53000 years ago, most likely by a split from a shared ancestral population. This analysis suggests that Indian populations have complex ancestry which cannot be explained by a single expansion model.


Assuntos
Cromossomos Humanos Y/genética , Genética Populacional , Análise de Sequência de DNA , População Branca/genética , Bases de Dados Genéticas , Genoma Humano , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Índia , Filogenia , Polimorfismo de Nucleotídeo Único
18.
Mol Biol Evol ; 33(12): 3268-3283, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27795229

RESUMO

Natural selection is crucial for the adaptation of populations to their environments. Here, we present the first global study of natural selection in the Hominidae (humans and great apes) based on genome-wide information from population samples representing all extant species (including most subspecies). Combining several neutrality tests we create a multi-species map of signatures of natural selection covering all major types of natural selection. We find that the estimated efficiency of both purifying and positive selection varies between species and is significantly correlated with their long-term effective population size. Thus, even the modest differences in population size among the closely related Hominidae lineages have resulted in differences in their ability to remove deleterious alleles and to adapt to changing environments. Most signatures of balancing and positive selection are species-specific, with signatures of balancing selection more often being shared among species. We also identify loci with evidence of positive selection across several lineages. Notably, we detect signatures of positive selection in several genes related to brain function, anatomy, diet and immune processes. Our results contribute to a better understanding of human evolution by putting the evidence of natural selection in humans within its larger evolutionary context. The global map of natural selection in our closest living relatives is available as an interactive browser at http://tinyurl.com/nf8qmzh.


Assuntos
Hominidae/genética , Seleção Genética , Alelos , Animais , Evolução Biológica , Bases de Dados de Ácidos Nucleicos , Evolução Molecular , Estudos de Associação Genética , Variação Genética , Humanos/genética , Metagenômica/métodos , Polimorfismo Genético , Análise de Sequência de DNA/métodos
19.
Nat Genet ; 48(9): 1066-70, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27455350

RESUMO

To shed light on the peopling of South Asia and the origins of the morphological adaptations found there, we analyzed whole-genome sequences from 10 Andamanese individuals and compared them with sequences for 60 individuals from mainland Indian populations with different ethnic histories and with publicly available data from other populations. We show that all Asian and Pacific populations share a single origin and expansion out of Africa, contradicting an earlier proposal of two independent waves of migration. We also show that populations from South and Southeast Asia harbor a small proportion of ancestry from an unknown extinct hominin, and this ancestry is absent from Europeans and East Asians. The footprints of adaptive selection in the genomes of the Andamanese show that the characteristic distinctive phenotypes of this population (including very short stature) do not reflect an ancient African origin but instead result from strong natural selection on genes related to human body size.


Assuntos
Adaptação Fisiológica/genética , Povo Asiático/genética , Marcadores Genéticos/genética , Variação Genética/genética , Genética Populacional , Migração Humana , Seleção Genética/genética , Ásia , Estudo de Associação Genômica Ampla , Humanos , Fenótipo
20.
Hum Mutat ; 37(10): 1060-73, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27397105

RESUMO

Nucleotide variants in microRNA regions have been associated with disease; nevertheless, few studies still have addressed the allele-dependent effect of these changes. We studied microRNA genetic variation in human populations and found that while low-frequency variants accumulate indistinctly in microRNA regions, the mature and seed regions tend to be depleted of high-frequency variants, probably as a result of purifying selection. Comparison of pairwise population fixation indexes among regions showed that the seed had higher population fixation indexes than the other regions, suggesting the existence of local adaptation in the seed region. We further performed functional studies of three microRNA variants associated with cancer (rs2910164:C > G in MIR146A, rs11614913:C > T in MIR196A2, and rs3746444:A > G in both MIR499A and MIR499B). We found differences in the expression between alleles and in the regulation of several genes involved in cancer, such as TP53, KIT, CDH1, CLH, and TERT, which may result in changes in regulatory networks related to tumorigenesis. Furthermore, luciferase-based assays showed that MIR499A could be regulating the cadherin CDH1 and the cell adhesion molecule CLH1 in an allele-dependent fashion. A better understanding of the effect of microRNA variants associated with disease could be key in our way to a more personalized medicine.


Assuntos
MicroRNAs/genética , Neoplasias/genética , Regiões 3' não Traduzidas , Antígenos CD , Caderinas/genética , Frequência do Gene , Redes Reguladoras de Genes , Estudos de Associação Genética , Predisposição Genética para Doença , Variação Genética , Células HeLa , Humanos , Medicina de Precisão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...