Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 93(5): 053102, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35649792

RESUMO

The reduction of detector dead time represents an enabling factor in several photon counting applications. In this work, we investigate the free-running operation of reach-through single-photon avalanche diodes (SPADs) at ultra-low dead times. By employing a fast active quenching circuit with direct bonding to the detector, we are able to achieve a 10 ns dead time with a thick SPAD by Excelitas, still maintaining extremely low afterpulsing probabilities (below 1.5%).

2.
Rev Sci Instrum ; 92(6): 063702, 2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34243546

RESUMO

Time-Correlated Single-Photon Counting (TCSPC) is an excellent technique used in a great variety of scientific experiments to acquire exceptionally fast and faint light signals. Above all, in Fluorescence Lifetime Imaging (FLIM), it is widely recognized as the gold standard to record sub-nanosecond transient phenomena with picosecond precision. Unfortunately, TCSPC has an intrinsic limitation: to avoid the so-called pile-up distortion, the experiments have been historically carried out, limiting the acquisition rate below 5% of the excitation frequency. In 2017, we demonstrated that such a limitation can be overcome if the detector dead time is exactly matched with the excitation period, thus paving the way to unprecedented speedup of FLIM measurements. In this paper, we present the first single-channel system that implements the novel proposed methodology to be used in modern TCSPC experimental setups. To achieve this goal, we designed a compact detection head, including a custom single-photon avalanche diode externally driven by a fully integrated Active Quenching Circuit (AQC), featuring a finely tunable dead time and a short reset time. The output timing signal is extracted by using a picosecond precision Pick-Up Circuit (PUC) and fed to a newly developed timing module consisting of a mixed-architecture Fast Time to Amplitude Converter (F-TAC) followed by high-performance Analog-to-Digital Converters (ADCs). Data are transmitted in real-time to a Personal Computer (PC) at USB 3.0 rate for specific and custom elaboration. Preliminary experimental results show that the new TCSPC system is suitable for implementing the proposed technique, achieving, indeed, high timing precision along with a count rate as high as 40 Mcps.

3.
Rev Sci Instrum ; 90(3): 033102, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30927784

RESUMO

Recently developed Active Quenching Circuits (AQCs) with fast-gating capabilities allow us to control a single photon avalanche diode with gate windows in the nanosecond and sub-nanosecond range, thus paving the way to advanced applications, especially in the field of time-correlated single photon counting. In this scenario, an accurate measurement of the time needed by the AQC to turn-on the detector is of utmost importance. Indeed, it permits us to evaluate the impact of the system in specific applications and provides a tool to designers to understand AQC limitations and to enhance its performance. Here we propose a simple non-invasive technique to accurately measure the time needed by a gated system to turn on the detector. The effectiveness of the measure has been proved on a gated system, and results have been compared to those obtained starting from the distribution of recorded photons under constant illumination, which is a widely used approach in the literature. The great advantage of the proposed approach is that it avoids typical artifacts that affect other kinds of measurements.

4.
Rev Sci Instrum ; 88(11): 116102, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29195340

RESUMO

A new algorithm for controlling the temperature of a thermoelectric cooler is proposed. Unlike a classic proportional-integral-derivative (PID) control, which computes the bias voltage from the temperature error, the proposed algorithm exploits the linear relation that exists between the cold side's temperature and the amount of heat that is removed per unit time. Since this control is based on an existing linear relation, it is insensitive to changes in the operating point that are instead crucial in classic PID control of a non-linear system.

5.
Rev Sci Instrum ; 88(8): 083704, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28863689

RESUMO

Time-Correlated Single Photon Counting (TCSPC) is a very efficient technique for measuring weak and fast optical signals, but it is mainly limited by the relatively "long" measurement time. Multichannel systems have been developed in recent years aiming to overcome this limitation by managing several detectors or TCSPC devices in parallel. Nevertheless, if we look at state-of-the-art systems, there is still a strong trade-off between the parallelism level and performance: the higher the number of channels, the poorer the performance. In 2013, we presented a complete and compact 32 × 1 TCSPC system, composed of an array of 32 single-photon avalanche diodes connected to 32 time-to-amplitude converters, which showed that it was possible to overcome the existing trade-off. In this paper, we present an evolution of the previous work that is conceived for high-throughput fluorescence lifetime imaging microscopy. This application can be addressed by the new system thanks to a centralized logic, fast data management and an interface to a microscope. The new conceived hardware structure is presented, as well as the firmware developed to manage the operation of the module. Finally, preliminary results, obtained from the practical application of the technology, are shown to validate the developed system.

6.
Rev Sci Instrum ; 88(2): 026103, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28249471

RESUMO

The minimization of Single Photon Avalanche Diodes (SPADs) dead time is a key factor to speed up photon counting and timing measurements. We present a fully integrated Active Quenching Circuit (AQC) able to provide a count rate as high as 100 MHz with custom technology SPAD detectors. The AQC can also operate the new red enhanced SPAD and provide the timing information with a timing jitter Full Width at Half Maximum (FWHM) as low as 160 ps.

7.
Rev Sci Instrum ; 85(10): 103101, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25362365

RESUMO

Fluorescence correlation spectroscopy (FCS) is a well-established technique to study binding interactions or the diffusion of fluorescently labeled biomolecules in vitro and in vivo. Fast FCS experiments require parallel data acquisition and analysis which can be achieved by exploiting a multi-channel Single Photon Avalanche Diode (SPAD) array and a corresponding multi-input correlator. This paper reports a 32-channel FPGA based correlator able to perform 32 auto/cross-correlations simultaneously over a lag-time ranging from 10 ns up to 150 ms. The correlator is included in a 32 × 1 SPAD array module, providing a compact and flexible instrument for high throughput FCS experiments. However, some inherent features of SPAD arrays, namely afterpulsing and optical crosstalk effects, may introduce distortions in the measurement of auto- and cross-correlation functions. We investigated these limitations to assess their impact on the module and evaluate possible workarounds.


Assuntos
Equipamentos e Provisões Elétricas , Fótons , Espectrometria de Fluorescência/instrumentação , Fenômenos Ópticos , Probabilidade , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA