Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cardiovasc Med ; 8: 701961, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458335

RESUMO

Introduction: Limited information is available on blood pressure (BP) behavior in workers exposed to chronic intermittent hypoxia (CIH), and even less is known regarding effects of CIH on 24-h ambulatory BP in those affected by arterial hypertension at sea level (SL). The aims of this study were to assess clinic and 24-h ambulatory BP at SL and at high altitude (HA; 3,870 m above SL) in workers exposed to CIH, and to compare BP response to HA exposure between normotensive and hypertensive workers. Methods: Nineteen normotensive and 18 pharmacologically treated hypertensive miners acclimatized to CIH were included, whose work was organized according to a "7 days-on-7 days-off" shift pattern between SL and HA. All measurements were performed on the second and seventh day of their HA shift and after the second day of SL sojourn. Results: Compared to SL, 24-h systolic BP (SBP) and diastolic BP (DBP) increased at HA [+14.7 ± 12.6 mmHg (p < 0.001) and +8.7 ± 7.2 mmHg (p < 0.001), respectively], and SBP nocturnal fall decreased consistently (-4.1 ± 9.8%; p < 0.05) in all participants, with hypertensives showing higher nocturnal DBP than normotensives (p < 0.05) despite the current therapy. Also, heart rate (HR) nocturnal fall tended to be reduced at HA. In addition, the 24-h SBP/DBP hypertension threshold of ≥130/80 mmHg was exceeded by 39% of workers at SL and by 89% at HA. Clinic HR, SBP, and DBP were significantly higher on the second day of work at HA compared with SL, the increase being more pronounced for SBP in hypertensives (p < 0.05) and accompanied by, on average, mild altitude sickness in both groups. These symptoms and the values of all cardiovascular variables decreased on the seventh day at HA (p < 0.05) regardless of CIH exposure duration. Conclusion: Long history of work at HA according to scheduled CIH did not prevent the occurrence of acute cardiovascular changes at HA during the first days of exposure. The BP response to HA tended to be more pronounced in hypertensive than in normotensive workers despite being already treated; the BP changes were more evident for 24-h ambulatory BP. Twenty-four-hour ABP monitoring is a useful tool for an appropriate evaluation of BP in CIH workers.

2.
Front Physiol ; 9: 1415, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30364035

RESUMO

Plyometric training performed at sea level enhance explosive and endurance performance at sea level. However, its effects on explosive and endurance performance at high altitude had not been studied. Therefore, the aim of this study was to determine the effects of a sea level short-term (i.e., 4-week) plyometric training program on explosive and endurance performance at sea level and at high altitude (i.e., 3,270 m above sea level). Participants were randomly assigned to a control group (n = 12) and a plyometric training group (n = 11). Neuromuscular (reactive strength index - RSI) and endurance (2-km time-trial; running economy [RE]; maximal oxygen uptake - VO2max) measurements were performed at sea level before, at sea level after intervention (SL +4 week), and at high altitude 24-h post SL +4 week. The ANOVA revealed that at SL +4 week the VO2max was not significantly changed in any group, although RE, RSI and 2-km time trial were significantly (p < 0.05) improved in the plyometric training group. After training, when both groups were exposed to high altitude, participants from the plyometric training group showed a greater RSI (p < 0.05) and were able to maintain their 2-km time trial (11.3 ± 0.5 min vs. 10.7 ± 0.6 min) compared to their pre-training sea level performance. In contrast, the control group showed no improvement in RSI, with a worse 2-km time trial performance (10.3 ± 0.8 min vs. 9.02 ± 0.64 min; p < 0.05; ES = 0.13). Moreover, after training, both at sea level and at high altitude the plyometric training group demonstrated a greater (p < 0.05) RSI and 2-km time trial performance compared to the control group. The oxygen saturation was significantly decreased after acute exposure to high altitude in the two groups (p < 0.05). These results confirm the beneficial effects of sea level short-term plyometric training on explosive and endurance performance at sea level. Moreover, current results indicates that plyometric training may also be of value for endurance athletes performing after an acute exposure to high altitude.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA