Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Toxicol In Vitro ; 52: 70-86, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29885439

RESUMO

Hydrazine-based liquid propellants are routinely used for space rocket propulsion, in particular monomethylhydrazine (MMH), although such compounds are highly hazardous. For several years, great efforts were devoted to developing a less hazardous molecule. To explore the toxicological effects of an alternative compound, namely (E)-1,1,4,4-tetramethyl-2-tetrazene (TMTZ), we exposed various cellular animal and human models to this compound and to the reference compound MMH. We observed no cytotoxic effects following exposure to TMTZ in animal, as well as human models. However, although the three animal models were unaffected by MMH, exposure of the human hepatic HepaRG cell model revealed that apoptotic cytotoxic effects were only detectable in proliferative human hepatic HepaRG cells and not in differentiated cells, although major biochemical modifications were uncovered in the latter. The present findings indicate that the metabolic mechanisms of MMH toxicity is close to those described for hydrazine with numerous biochemical alterations induced by mitochondrial disruption, production of radical species, and aminotransferase inhibition. The alternative TMTZ molecule had little impact on cellular viability and proliferation of rodent and human dermic and hepatic cell models. TMTZ did not produce any metabolomic effects and appears to be a promising putative industrial alternative to MMH.


Assuntos
Propelentes de Aerossol/toxicidade , Compostos Azo/toxicidade , Monometilidrazina/toxicidade , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetulus , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Humanos , Metabolômica , Camundongos
2.
Chemistry ; 23(41): 9897-9907, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28498558

RESUMO

1,1,4,4-Tetramethyl-2-tetrazene (TMTZ) is considered as a prospective replacement for toxic hydrazines used in liquid rocket propulsion. The heat of formation of TMTZ was computed and measured, giving values well above those of the hydrazines commonly used in propulsion. This led to a predicted maximum Isp of 337 s for TMTZ/N2 O4 mixtures, which is a value comparable to that of monomethylhydrazine. We found that TMTZ has a vapor pressure well below that of liquid hydrazines, and it is far less toxic. Finally, an improved synthesis is proposed, which is compatible with existing industrial production facilities after minor changes. TMTZ is thus an attractive liquid propellant candidate, with a performance comparable to hydrazines but a lower vapor pressure and toxicity.

3.
Chem Asian J ; 11(5): 730-44, 2016 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-26762868

RESUMO

The use of ab initio and DFT methods to calculate the enthalpies of formation of solid ionic compounds is described. The results obtained from the calculations are then compared with those from experimental measurements on nitrogen-rich salts of the 2,2-dimethyltriazanium cation (DMTZ) synthesized in our laboratory and on other nitrogen-rich ionic compounds. The importance of calculating accurate volumes and lattice enthalpies for the determination of heats of formation is also discussed. Furthermore, the crystal structure and hydrogen-bonding networks of the nitroformate salt of the DMTZ cation is described in detail. Lastly, the theoretical heats of formation were used to calculate the specific impulses (Isp ) of the salts of the DMTZ cation in view of a prospective application in propellant formulations.

4.
Anal Bioanal Chem ; 407(22): 6721-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26082396

RESUMO

(E)-1,1,4,4-tetramethyl-2-tetrazene (TMTZ) is formed from the oxidation of the unsymmetrical 1,1-dimethylhydrazine (UDMH) and is used as a storable liquid fuel which can be considered as a new potential propellant for space rocket propulsion. To better understand the toxicological behavior of the compound, an intraperitoneal administration of TMTZ was performed in mice to define its toxicokinetics and tissue distribution. A fully validated liquid chromatography coupled to tandem mass spectrometry (LC-MS/MS) assay was developed to determine TMTZ levels in biological samples. Determination of TMTZ was achieved using 50 µL of plasma or tissue solution. Precipitation with ammonium sulfate and acetonitrile was used for sample preparation. Liquid chromatography was performed on an Atlantis HILIC Silica column (Waters; 3 µm, 150 mm × 2.1 mm i.d.). Isocratic elution with a mixture of ammonium acetate buffer (pH 5, 100 mM)/water/acetonitrile (3:2:95, v/v/v) was used. The detection was conducted using an electrospray source in positive ion mode. TMTZ and (15)N2-TMTZ (internal standard) were quantitated in selected reaction monitoring mode using the transition m/z 117→72 and 119→74, respectively. Standard curves exhibited excellent linearity in the range of 10-500 ng/mL for plasma and 50-2000 ng/mL for all tissues (heart, liver, brain, kidney, and lung) analyzed, and acceptable precision and accuracy (<10 %) were obtained. The elimination rate constant strongly suggests that TMTZ was very quickly eliminated from the body. The results of tissue distribution experiments indicated that TMTZ underwent a rapid distribution into limited organs such as the liver, kidney, and brain.


Assuntos
Cromatografia Líquida/métodos , Dimetilidrazinas/farmacocinética , Dimetilidrazinas/toxicidade , Espectrometria de Massas em Tandem/métodos , Testes de Toxicidade/métodos , Animais , Dimetilidrazinas/sangue , Feminino , Taxa de Depuração Metabólica , Camundongos , Especificidade de Órgãos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...