Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Physiol ; 50(10): 1761-73, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19690000

RESUMO

In higher plants the glutamate dehydrogenase (GDH) enzyme catalyzes the reversible amination of 2-oxoglutarate to form glutamate, using ammonium as a substrate. For a better understanding of the physiological function of GDH either in ammonium assimilation or in the supply of 2-oxoglutarate, we used transgenic tobacco (Nicotiana tabacum L.) plants overexpressing the two genes encoding the enzyme. An in vivo real time (15)N-nuclear magnetic resonance (NMR) spectroscopy approach allowed the demonstration that, when the two GDH genes were overexpressed individually or simultaneously, the transgenic plant leaves did not synthesize glutamate in the presence of ammonium when glutamine synthetase (GS) was inhibited. In contrast we confirmed that the primary function of GDH is to deaminate Glu. When the two GDH unlabeled substrates ammonium and Glu were provided simultaneously with either [(15)N]Glu or (15)NH(4)(+) respectively, we found that the ammonium released from the deamination of Glu was reassimilated by the enzyme GS, suggesting the occurrence of a futile cycle recycling both ammonium and Glu. Taken together, these results strongly suggest that the GDH enzyme, in conjunction with NADH-GOGAT, contributes to the control of leaf Glu homeostasis, an amino acid that plays a central signaling and metabolic role at the interface of the carbon and nitrogen assimilatory pathways. Thus, in vivo NMR spectroscopy appears to be an attractive technique to follow the flux of metabolites in both normal and genetically modified plants.


Assuntos
Glutamato Desidrogenase/metabolismo , Nicotiana/enzimologia , Proteínas de Plantas/metabolismo , Glutamato Desidrogenase/genética , Ácido Glutâmico/biossíntese , Espectroscopia de Ressonância Magnética , Nitrogênio/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/genética , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/genética , Compostos de Amônio Quaternário/metabolismo , Nicotiana/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...