Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Electrophoresis ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38517249

RESUMO

The analysis of cell electrophysiology for pathogenic samples at BSL3 can be problematic. It is virtually impossible to isolate infected from uninfected without a label, for example green fluorescent protein, which can potentially alter the cell electrical properties. Furthermore, the measurement of highly pathogenic organisms often requires equipment dedicated only for use with these organisms due to safety considerations. To address this, we have used dielectrophoresis to study the electrical properties of the human THP-1 cell line and monocyte-derived macrophages before and after infection with non-labelled Mycobacterium tuberculosis. Infection with these highly pathogenic bacilli resulted in changes including a raised surface conductance (associated with reduced zeta potential) and increased capacitance, suggesting an increase in surface roughness. We have also investigated the effect of fixation on THP-1 cells as a means to enable study on fixed samples in BSL1 or 2 laboratories, which suggests that the properties of these cells are largely unaffected by the fixation process. This advance results in a novel technique enabling the isolation of infected and non-infected cells in a sample without labelling.

2.
Electrophoresis ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38193244

RESUMO

The foundation of dielectrophoresis (DEP) as a tool for biological investigation is the use of the Clausius-Mossotti (C-M) factor to model the observed behaviour of cells experiencing DEP across a frequency range. Nevertheless, it is also the case that at lower frequencies, the DEP spectrum deviates from predictions; there exists a rise in DEP polarisability, which varies in frequency and magnitude with different cell types and medium conductivities. In order to evaluate the origin of this effect, we have studied DEP spectra from five cell types (erythrocytes, platelets, neurons, HeLa cancer cells and monocytes) in several conditions including medium conductivity and cell treatment. Our results suggest the effect manifests as a low-pass dispersion whose cut-off frequency varies with membrane conductance and capacitance as determined using the DEP spectrum; the effect also varies as a logarithm of medium conductivity and Debye length. These together suggest that the values of membrane capacitance and conductance depend not only on the impedance of the membrane itself, but also of the surrounding double layer. The amplitude of the effect in different cell types compared to the C-M factor was found to correlate with the depolarisation factors for the cells' shapes, suggesting that this ratio may be useful as an indicator of cell shape for DEP modelling.

3.
EMBO J ; 42(19): e114164, 2023 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-37554073

RESUMO

Cellular circadian rhythms confer temporal organisation upon physiology that is fundamental to human health. Rhythms are present in red blood cells (RBCs), the most abundant cell type in the body, but their physiological function is poorly understood. Here, we present a novel biochemical assay for haemoglobin (Hb) oxidation status which relies on a redox-sensitive covalent haem-Hb linkage that forms during SDS-mediated cell lysis. Formation of this linkage is lowest when ferrous Hb is oxidised, in the form of ferric metHb. Daily haemoglobin oxidation rhythms are observed in mouse and human RBCs cultured in vitro, or taken from humans in vivo, and are unaffected by mutations that affect circadian rhythms in nucleated cells. These rhythms correlate with daily rhythms in core body temperature, with temperature lowest when metHb levels are highest. Raising metHb levels with dietary sodium nitrite can further decrease daytime core body temperature in mice via nitric oxide (NO) signalling. These results extend our molecular understanding of RBC circadian rhythms and suggest they contribute to the regulation of body temperature.


Assuntos
Eritrócitos , Hemoglobinas , Humanos , Camundongos , Animais , Eritrócitos/metabolismo , Hemoglobinas/metabolismo , Oxirredução , Heme/metabolismo , Ritmo Circadiano
4.
J Oral Pathol Med ; 52(4): 305-314, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36811206

RESUMO

BACKGROUND: Delays in the identification and referral of oral cancer remain frequent. An accurate and non-invasive diagnostic test to be performed in primary care may help identifying oral cancer at an early stage and reduce mortality. Point-of-care Analysis for Non-invasive Diagnosis of Oral cancer (PANDORA) was a proof-of-concept prospective diagnostic accuracy study aimed at advancing the development of a dielectrophoresis-based diagnostic platform for oral squamous cell carcinoma (OSCC) and epithelial dysplasia (OED) using a novel automated DEPtech 3DEP analyser. METHODS: The aim of PANDORA was to identify the set-up of the DEPtech 3DEP analyser associated with the highest diagnostic accuracy in identifying OSCC and OED from non-invasive brush biopsy samples, as compared to the gold standard test (histopathology). Measures of accuracy included sensitivity, specificity, positive and negative predictive value. Brush biopsies were collected from individuals with histologically proven OSCC and OED, histologically proven benign mucosal disease, and healthy mucosa (standard test), and analysed via dielectrophoresis (index test). RESULTS: 40 individuals with OSCC/OED and 79 with benign oral mucosal disease/healthy mucosa were recruited. Sensitivity and specificity of the index test was 86.8% (95% confidence interval [CI], 71.9%-95.6%) and 83.6% (95% CI, 73.0%-91.2%). Analysing OSCC samples separately led to higher diagnostic accuracy, with 92.0% (95% CI, 74.0%-99.0%) sensitivity and 94.5% (95% CI, 86.6%-98.5%) specificity. CONCLUSION: The DEPtech 3DEP analyser has the potential to identify OSCC and OED with notable diagnostic accuracy and warrants further investigation as a potential triage test in the primary care setting for patients who may need to progress along the diagnostic pathway and be offered a surgical biopsy.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Estudos Prospectivos , Sistemas Automatizados de Assistência Junto ao Leito , Biomarcadores Tumorais/metabolismo , Hiperplasia , Tecnologia
5.
Front Bioeng Biotechnol ; 10: 994487, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36440448

RESUMO

Circadian rhythms are biological adaptations to the day-night cycle, whereby cells adapt to changes in the external environment or internal physiology according to the time of day. Whilst many cellular clock mechanisms involve gene expression feedback mechanisms, clocks operate even where gene expression is absent. For example, red blood cells (RBCs) do not have capacity for gene expression, and instead possess an electrophysiological oscillator where cytosolic potassium plays a key role in timekeeping. We examined murine blood under normal conditions as well as in two perturbed states, malaria infection and induced anemia, to assess changes in baseline cellular electrophysiology and its implications for the electrophysiological oscillator. Blood samples were analyzed at 4-h intervals over 2 days by dielectrophoresis, and microscopic determination of parasitemia. We found that cytoplasmic conductivity (indicating the concentration of free ions in the cytoplasm and related to the membrane potential) exhibited circadian rhythmic behavior in all three cases (control, malaria and anemia). Compared to control samples, cytoplasm conductivity was decreased in the anemia group, whilst malaria-infected samples were in antiphase to control. Furthermore, we identified rhythmic behavior in membrane capacitance of malaria infected cells that was not replicated in the other samples. Finally, we reveal the historically famous rhythmicity of malaria parasite replication is in phase with cytoplasm conductivity. Our findings suggest the electrophysiological oscillator can impact on malaria parasite replication and/or is vulnerable to perturbation by rhythmic parasite activities.

6.
Sci Rep ; 12(1): 15005, 2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056086

RESUMO

Electrical aspects of cell function manifest in many ways. The most widely studied is the cell membrane potential, Vm, but others include the conductance and capacitance of the membrane, the conductance of the enclosed cytoplasm, as well as the charge at the cell surface (an electrical double layer) producing an extracellular electrical potential, the ζ-potential. Empirical relationships have been identified between many of these, but not the mechanisms that link them all. Here we examine relationships between Vm and the electrical conductivities of both the cytoplasm and extracellular media, using data from a suspensions of red blood cells. We have identified linear relationships between extracellular medium conductivity, cytoplasm conductivity and Vm. This is in contrast to the standard model of a resting membrane potential which describes a logarithmic relationship between Vm and the concentration of permeable ions in the extracellular medium. The model here suggests that Vm is partially electrostatic in origin, arising from a charge imbalance at an inner electrical double-layer, acting across the membrane and double-layer capacitances to produce a voltage. This model describes an origin for coupling between Vm and ζ, by which cells can alter their electrostatic relationship with their environment, with implications for modulation of membrane ion transport, adhesion of proteins such as antibodies and wider cell-cell interactions.


Assuntos
Eritrócitos , Ânions , Cátions , Citoplasma , Condutividade Elétrica , Potenciais da Membrana/fisiologia
7.
Electrophoresis ; 43(12): 1337-1346, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35543378

RESUMO

Adipocytes are energy stores of the body which also play a role in physiological regulation and homeostasis through their endocrine activity. Adipocyte circadian clocks drive rhythms in gene expression, and dysregulation of these circadian rhythms associates with pathological conditions such as diabetes. However, although the role of circadian rhythms in adipose cells and related tissues has been studied from phsyiological and molecular perspectives, they have not yet been explored from an electrical perspective. Research into electro-chronobiology has revealed that electrical properties have important roles in peripheral clock regulation independently of transcription-translation feedback loops. We have used dielectrophoresis to study electrophysiological rhythms in pre-adipocytes - representing an adipocyte precursor and nucleated cell-based model, using serum shocking as the cellular method of clock entrainment. The results revealed significant electrophysiological rhythms, culminating in circadian (ca. 24 hourly) cycles in effective membrane capacitance and radius properties, whereas effective membrane conductance was observed to express ultradian (ca. 14 hourly) rhythms. These data shed new light into pre-adipocyte electrical behaviour and present a potential target for understanding and manipulation of metabolic physiology.


Assuntos
Relógios Circadianos , Adipócitos/metabolismo , Animais , Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Camundongos
8.
Methods Mol Biol ; 2482: 255-264, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35610432

RESUMO

Dielectrophoresis (DEP) enables the measurement of population-level electrophysiology in many cell types by examining their interaction with an externally applied electric field. Here we describe the application of DEP to the measurement of circadian rhythms in a non-nucleated cell type, the human red blood cell. Using DEP, population-level electrophysiology of ~20,000 red blood cells can be measured from start to finish in less than 3 min, and can be repeated over several days to reveal cell-autonomous daily regulation of membrane electrophysiology. This method is amenable to the characterization of circadian rhythms by altering entrainment and free-run conditions or through pharmacological perturbation.


Assuntos
Ritmo Circadiano , Eritrócitos , Ritmo Circadiano/fisiologia , Fenômenos Eletrofisiológicos , Eritrócitos/metabolismo , Humanos
9.
Sci Rep ; 11(1): 19446, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34593849

RESUMO

Even in nonexcitable cells, the membrane potential Vm is fundamental to cell function, with roles from ion channel regulation, development, to cancer metastasis. Vm arises from transmembrane ion concentration gradients; standard models assume homogeneous extracellular and intracellular ion concentrations, and that Vm only exists across the cell membrane and has no significance beyond it. Using red blood cells, we show that this is incorrect, or at least incomplete; Vm is detectable beyond the cell surface, and modulating Vm produces quantifiable and consistent changes in extracellular potential. Evidence strongly suggests this is due to capacitive coupling between Vm and the electrical double layer, rather than molecular transporters. We show that modulating Vm changes the extracellular ion composition, mimicking the behaviour if voltage-gated ion channels in non-excitable channels. We also observed Vm-synchronised circadian rhythms in extracellular potential, with significant implications for cell-cell interactions and cardiovascular disease.


Assuntos
Eritrócitos/fisiologia , Potenciais da Membrana/fisiologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ritmo Circadiano , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Eritrócitos/efeitos dos fármacos , Humanos , Neuraminidase/farmacologia , Valinomicina/farmacologia
10.
Micromachines (Basel) ; 12(8)2021 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-34442571

RESUMO

Diseases such as osteoarthritis (OA) are commonly characterized at the molecular scale by gene expression and subsequent protein production; likewise, the effects of pharmaceutical interventions are typically characterized by the effects of molecular interactions. However, these phenomena are usually preceded by numerous precursor steps, many of which involve significant ion influx or efflux. As a consequence, rapid assessment of cell electrophysiology could play a significant role in unravelling the mechanisms underlying drug interactions and progression of diseases, such as OA. In this study, we used dielectrophoresis (DEP), a technique that allows rapid, label-free determination of the dielectric parameters to assess the role of potassium ions on the dielectric characteristics of chondrocytes, and to investigate the electrophysiological differences between healthy chondrocytes and those from an in vitro arthritic disease model. Our results showed that DEP was able to detect a significant decrease in membrane conductance (6191 ± 738 vs. 8571 ± 1010 S/m2), membrane capacitance (10.3 ± 1.47 vs. 14.5 ± 0.01 mF/m2), and whole cell capacitance (5.4 ± 0.7 vs. 7.5 ± 0.3 pF) following inhibition of potassium channels using 10 mM tetraethyl ammonium, compared to untreated healthy chondrocytes. Moreover, cells from the OA model had a different response to DEP force in comparison to healthy cells; this was seen in terms of both a decreased membrane conductivity (782 S/m2 vs. 1139 S/m2) and a higher whole cell capacitance (9.58 ± 3.4 vs. 3.7 ± 1.3 pF). The results show that DEP offers a high throughput method, capable of detecting changes in membrane electrophysiological properties and differences between disease states.

11.
J Cell Physiol ; 236(11): 7421-7439, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34008188

RESUMO

Chondrogenic progenitor cells (CPCs) may be used as an alternative source of cells with potentially superior chondrogenic potential compared to mesenchymal stem cells (MSCs), and could be exploited for future regenerative therapies targeting articular cartilage in degenerative diseases such as osteoarthritis (OA). In this study, we hypothesised that CPCs derived from OA cartilage may be characterised by a distinct channelome. First, a global transcriptomic analysis using Affymetrix microarrays was performed. We studied the profiles of those ion channels and transporter families that may be relevant to chondroprogenitor cell physiology. Following validation of the microarray data with quantitative reverse transcription-polymerase chain reaction, we examined the role of calcium-dependent potassium channels in CPCs and observed functional large-conductance calcium-activated potassium (BK) channels involved in the maintenance of the chondroprogenitor phenotype. In line with our very recent results, we found that the KCNMA1 gene was upregulated in CPCs and observed currents that could be attributed to the BK channel. The BK channel inhibitor paxilline significantly inhibited proliferation, increased the expression of the osteogenic transcription factor RUNX2, enhanced the migration parameters, and completely abolished spontaneous Ca2+ events in CPCs. Through characterisation of their channelome we demonstrate that CPCs are a distinct cell population but are highly similar to MSCs in many respects. This study adds key mechanistic data to the in-depth characterisation of CPCs and their phenotype in the context of cartilage regeneration.


Assuntos
Cartilagem Articular/metabolismo , Movimento Celular , Condrócitos/metabolismo , Canais Iônicos/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Osteoartrite do Joelho/metabolismo , Células-Tronco/metabolismo , Transcriptoma , Sinalização do Cálcio , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/patologia , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Condrócitos/efeitos dos fármacos , Condrócitos/patologia , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Perfilação da Expressão Gênica , Humanos , Canais Iônicos/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/metabolismo , Potenciais da Membrana , Proteínas de Membrana Transportadoras/genética , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/patologia , Bloqueadores dos Canais de Potássio/farmacologia , Células-Tronco/efeitos dos fármacos , Células-Tronco/patologia , Fatores de Tempo
12.
Sci Rep ; 10(1): 14603, 2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32884022

RESUMO

It is known that cells grown in 3D are more tolerant to drug treatment than those grown in dispersion, but the mechanism for this is still not clear; cells grown in 3D have opportunities to develop inter-cell communication, but are also closely packed which may impede diffusion. In this study we examine methods for dielectrophoresis-based cell aggregation of both suspension and adherent cell lines, and compare the effect of various drugs on cells grown in 3D and 2D. Comparing viability of pharmacological interventions on 3D cell clusters against both suspension cells and adherent cells grown in monolayer, as well as against a unicellular organism with no propensity for intracellular communication, we suggest that 3D aggregates of adherent cells, compared to suspension cells, show a substantially different drug response to cells grown in monolayer, which increases as the IC50 is approached. Further, a mathematical model of the system for each agent demonstrates that changes to drug response are due to inherent changes in the system of adherent cells from the 2D to 3D state. Finally, differences in the electrophysiological membrane properties of the adherent cell type suggest this parameter plays an important role in the differences found in the 3D drug response.


Assuntos
Técnicas de Cultura de Células/métodos , Hidrogéis/química , Neoplasias/patologia , Vincristina/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Comunicação Celular , Proliferação de Células , Sobrevivência Celular , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Células K562 , Neoplasias/tratamento farmacológico
13.
Sci Rep ; 9(1): 19153, 2019 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-31844107

RESUMO

Electrical correlates of the physiological state of a cell, such as membrane conductance and capacitance, as well as cytoplasm conductivity, contain vital information about cellular function, ion transport across the membrane, and propagation of electrical signals. They are, however, difficult to measure; gold-standard techniques are typically unable to measure more than a few cells per day, making widespread adoption difficult and limiting statistical reproducibility. We have developed a dielectrophoretic platform using a disposable 3D electrode geometry that accurately (r2 > 0.99) measures mean electrical properties of populations of ~20,000 cells, by taking parallel ensemble measurements of cells at 20 frequencies up to 45 MHz, in (typically) ten seconds. This allows acquisition of ultra-high-resolution (100-point) DEP spectra in under two minutes. Data acquired from a wide range of cells - from platelets to large cardiac cells - benchmark well with patch-clamp-data. These advantages are collectively demonstrated in a longitudinal (same-animal) study of rapidly-changing phenomena such as ultradian (2-3 hour) rhythmicity in whole blood samples of the common vole (Microtus arvalis), taken from 10 µl tail-nick blood samples and avoiding sacrifice of the animal that is typically required in these studies.


Assuntos
Células/metabolismo , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Animais , Arvicolinae , Plaquetas/fisiologia , Membrana Celular/fisiologia , Condutividade Elétrica , Eletrodos , Eritrócitos/fisiologia , Humanos , Células Jurkat , Células K562 , Camundongos , Concentração Osmolar , Fatores de Tempo , Ritmo Ultradiano/fisiologia
14.
J Biol Rhythms ; 34(2): 144-153, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30898060

RESUMO

Temperature compensation and period determination by casein kinase 1 (CK1) are conserved features of eukaryotic circadian rhythms, whereas the clock gene transcription factors that facilitate daily gene expression rhythms differ between phylogenetic kingdoms. Human red blood cells (RBCs) exhibit temperature-compensated circadian rhythms, which, because RBCs lack nuclei, must occur in the absence of a circadian transcription-translation feedback loop. We tested whether period determination and temperature compensation are dependent on CKs in RBCs. As with nucleated cell types, broad-spectrum kinase inhibition with staurosporine lengthened the period of the RBC clock at 37°C, with more specific inhibition of CK1 and CK2 also eliciting robust changes in circadian period. Strikingly, inhibition of CK1 abolished temperature compensation and increased the Q10 for the period of oscillation in RBCs, similar to observations in nucleated cells. This indicates that CK1 activity is essential for circadian rhythms irrespective of the presence or absence of clock gene expression cycles.


Assuntos
Caseína Quinase Ialfa/fisiologia , Relógios Circadianos/genética , Ritmo Circadiano , Eritrócitos/metabolismo , Eritrócitos/fisiologia , Temperatura , Caseína Quinase Ialfa/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Humanos , Masculino , Estaurosporina/farmacologia
15.
Electrophoresis ; 39(8): 1104-1110, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29405335

RESUMO

Whilst personalized medicine (where interventions are precisely tailored to a patient's genotype and phenotype, as well as the nature and state of the disease) is regarded as an optimal form of treatment, the time and cost associated with it means it remains inaccessible to the greater public. A simpler alternative, stratified medicine, identifies groups of patients who are likely to respond to a given treatment. This allows appropriate treatments to be selected at the start of therapy, avoiding the common "trial and error" approach of replacing a therapy only once it is demonstrated to be ineffective in the patient. For stratification to be effective, tests are required that rapidly predict treatment effectiveness. Most tests use genetic analysis to identify drug targets, but these can be expensive and may not detect changes in the phenotype that affect drug sensitivity. An alternative method is to assess the whole-cell phenotype by evaluating drug response using cells from a biopsy. We assessed dielectrophoresis to assess drug efficacy on short timescales and at low cost. To explore the principle of assessing drug efficacy we examined two cell lines (one expressing EGFR, one not) with the drug Iressa. We then further explored the sensitive cells using combinations of chemotherapeutic and radiotherapeutic therapies. Our results compare with known effects of these cell/treatment combination, and offer the additional benefit over methods such as TUNEL of detecting drug effects such as cell cycle arrest, which do not cause cell death.


Assuntos
Antineoplásicos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Eletroforese/métodos , Gefitinibe/farmacologia , Neoplasias/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Linhagem Celular Tumoral , Receptores ErbB , Humanos , Neoplasias/patologia , Medicina de Precisão/métodos
16.
Nat Commun ; 8(1): 1978, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29215003

RESUMO

Circadian rhythms organize many aspects of cell biology and physiology to a daily temporal program that depends on clock gene expression cycles in most mammalian cell types. However, circadian rhythms are also observed in isolated mammalian red blood cells (RBCs), which lack nuclei, suggesting the existence of post-translational cellular clock mechanisms in these cells. Here we show using electrophysiological and pharmacological approaches that human RBCs display circadian regulation of membrane conductance and cytoplasmic conductivity that depends on the cycling of cytoplasmic K+ levels. Using pharmacological intervention and ion replacement, we show that inhibition of K+ transport abolishes RBC electrophysiological rhythms. Our results suggest that in the absence of conventional transcription cycles, RBCs maintain a circadian rhythm in membrane electrophysiology through dynamic regulation of K+ transport.


Assuntos
Relógios Circadianos/fisiologia , Ritmo Circadiano/fisiologia , Eritrócitos/metabolismo , Potássio/metabolismo , Fenômenos Eletrofisiológicos , Humanos , Peroxirredoxinas/metabolismo , RNA Mensageiro/análise , Transcrição Gênica
17.
Proc Natl Acad Sci U S A ; 114(18): 4591-4596, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28408395

RESUMO

Currently, cell separation occurs almost exclusively by density gradient methods and by fluorescence- and magnetic-activated cell sorting (FACS/MACS). These variously suffer from lack of specificity, high cell loss, use of labels, and high capital/operating cost. We present a dielectrophoresis (DEP)-based cell-separation method, using 3D electrodes on a low-cost disposable chip; one cell type is allowed to pass through the chip whereas the other is retained and subsequently recovered. The method advances usability and throughput of DEP separation by orders of magnitude in throughput, efficiency, purity, recovery (cells arriving in the correct output fraction), cell losses (those which are unaccounted for at the end of the separation), and cost. The system was evaluated using three example separations: live and dead yeast; human cancer cells/red blood cells; and rodent fibroblasts/red blood cells. A single-pass protocol can enrich cells with cell recovery of up to 91.3% at over 300,000 cells per second with >3% cell loss. A two-pass protocol can process 300,000,000 cells in under 30 min, with cell recovery of up to 96.4% and cell losses below 5%, an effective processing rate >160,000 cells per second. A three-step protocol is shown to be effective for removal of 99.1% of RBCs spiked with 1% cancer cells while maintaining a processing rate of ∼170,000 cells per second. Furthermore, the self-contained and low-cost nature of the separator device means that it has potential application in low-contamination applications such as cell therapies, where good manufacturing practice compatibility is of paramount importance.


Assuntos
Separação Celular/métodos , Eletroforese/métodos , Fenômenos Eletrofisiológicos , Eritrócitos/citologia , Neoplasias/patologia , Saccharomyces cerevisiae/citologia , Linhagem Celular Tumoral , Separação Celular/economia , Eletroforese/economia , Humanos
18.
J Biomed Mater Res A ; 105(7): 1911-1926, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28263431

RESUMO

Tissue engineering of human fetal osteoblast cells was investigated on gelatin-hydroxyapatite (HA), crosslinked, electrospun oriented fiber scaffolds at the different HA concentrations of 0, 10, 20, and 25 wt % in the dry fibers and different fiber diameter, pore size and porosity of scaffolds. Rheological tests and proton nuclear magnetic resonance spectroscopy were conducted for all solutions used for electrospinning. It was found that 25 wt % HA-gelatin scaffolds electrospun at 20 kV led to the greatest cell attachment, cell proliferation and extracellular matrix (ECM) production while fiber orientation improved the mechanical properties, where crosslinked electrospun 25 wt % HA-gelatin fiber scaffolds yielded a Young's modulus in the range of 0.5-0.9 GPa and a tensile strength in the range of 4-10 MPa in the fiber direction for an applied voltage of 20-30 kV, respectively, in the electrospinning of scaffolds. Biological characterization of cell seeded scaffolds yielded the rate of cell growth and ECM (collagen and calcium) production by the cells as a function of time; it included cell seeding efficiency tests, alamar blue cell proliferation assay, alkaline phosphate (ALP) assay, collagen assay, calcium colorimetric assay, fluorescence microscopy for live and dead cells, and scanning electron microscopy for cell culture from 1 to 18 days. After 18 days, cells seeded and grown on the 25 wt % HA-gelatin scaffold, electrospun at 20 kV, reached production of collagen at 370 µg/L and calcium production at 0.8 mM. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 1911-1926, 2017.


Assuntos
Osso e Ossos/metabolismo , Durapatita/química , Técnicas Eletroquímicas , Gelatina/química , Osteoblastos/metabolismo , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Osso e Ossos/citologia , Linhagem Celular , Humanos , Osteoblastos/citologia
19.
Analyst ; 141(23): 6408-6415, 2016 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-27774532

RESUMO

A loss of ability of cells to undergo apoptosis (programmed cell death, whereby the cell ceases to function and destroys itself) is commonly associated with cancer, and many anti-cancer interventions aim to restart the process. Consequently, the accurate quantification of apoptosis is essential in understanding the function and performance of new anti-cancer drugs. Dielectrophoresis has previously been demonstrated to detect apoptosis more rapidly than other methods, and is low-cost, label-free and rapid, but has previously been unable to accurately quantify cells through the apoptotic process because cells in late apoptosis disintegrate, making cell tracking impossible. In this paper we use a novel method based on light absorbance and multi-population tracking to quantify the progress of apoptosis, benchmarking against conventional assays including MTT, trypan blue and Annexin-V. Analyses are performed on suspension and adherent cells, and using two apoptosis-inducing agents. IC50 measurements compared favourably to MTT and were superior to trypan blue, whilst also detecting apoptotic progression faster than Annexin-V.


Assuntos
Apoptose , Doxorrubicina/farmacologia , Eletroforese/métodos , Células HeLa , Humanos , Células Jurkat
20.
Electrophoresis ; 36(13): 1493-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25884244

RESUMO

Cell analyses such as flow cytometry, dielectrophoresis, and some patch-clamp techniques require that cells be in monodisperse suspension in order for analysis to occur. Where cells have a normally adherent phenotype in vivo, this requires that cells be removed from the surface of the culture flask or vessel. This can be achieved in many ways, but most commonly either by the use of a dissociation medium of some form, or by scraping the cells from the surface. Both methods have potential drawbacks; chemical methods may alter the properties of the cells to such a degree that the measurement might be regarded as meaningless, whilst scraping could cause physical damage to the structure of the cells. In this paper, we use dielectrophoresis to analyse the electrical properties of two adherent cell lines detached by multiple methods, and compare these against a control cell line of suspension cells, examined in both the native state and when subject to the same chemical treatments. The results indicate that most chemical agents do not alter the electrophysiology of cells directly, though they may trigger some potential cell deterioration processes such as apoptosis in the cells. This can be observed in the production of apoptotic body-like particles and the alteration of cytoplasmic conductivity (which has been associated with apoptotic water efflux). However, cells detached by scraping exhibited statistically significant differences in their electrophysiological properties when compared to those detached by the chemical methods, indicating that this method is unsuitable for detachment of adherent cells prior to analysis of isolates suspension cells.


Assuntos
Adesão Celular/fisiologia , Técnicas de Cultura de Células/métodos , Sobrevivência Celular/fisiologia , Eletroforese/métodos , Linhagem Celular Tumoral , Células Cultivadas , Condutividade Elétrica , Humanos , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...