Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neuropsychiatry ; 5(1): 42-51, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31019917

RESUMO

Ketamine, a noncompetitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect and is used for patients experiencing treatment-resistant depression. We carried out a time-dependent targeted mass spectrometry-based metabolomics profiling analysis combined with a quantitative based on in vivo 15N metabolic labeling proteome comparison of ketamine- and vehicle-treated mice. The metabolomics and proteomics datasets were used to further elucidate ketamine's mode of action on the gamma-aminobutyric acid (GABA)ergic and glutamatergic systems. In addition, myelin basic protein levels were analyzed by Western Blot. We found altered GABA, glutamate and glutamine metabolite levels and ratios as well as increased levels of putrescine and serine - 2 positive modulators of the NMDAR. In addition, GABA receptor (GABAR) protein levels were reduced, whereas the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) subunit Gria2 protein levels were increased upon ketamine treatment. The significantly altered metabolite and protein levels further significantly correlated with the antidepressant-like behavior, which was assessed using the forced swim test. In conclusion and in line with previous research, our data indicate that ketamine impacts the AMPAR subunit Gria2 and results in decreased GABAergic inhibitory neurotransmission leading to increased excitatory neuronal activity.

2.
PLoS Biol ; 15(12): e2002690, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29283992

RESUMO

Response to antidepressant treatment in major depressive disorder (MDD) cannot be predicted currently, leading to uncertainty in medication selection, increasing costs, and prolonged suffering for many patients. Despite tremendous efforts in identifying response-associated genes in large genome-wide association studies, the results have been fairly modest, underlining the need to establish conceptually novel strategies. For the identification of transcriptome signatures that can distinguish between treatment responders and nonresponders, we herein submit a novel animal experimental approach focusing on extreme phenotypes. We utilized the large variance in response to antidepressant treatment occurring in DBA/2J mice, enabling sample stratification into subpopulations of good and poor treatment responders to delineate response-associated signature transcript profiles in peripheral blood samples. As a proof of concept, we translated our murine data to the transcriptome data of a clinically relevant human cohort. A cluster of 259 differentially regulated genes was identified when peripheral transcriptome profiles of good and poor treatment responders were compared in the murine model. Differences in expression profiles from baseline to week 12 of the human orthologues selected on the basis of the murine transcript signature allowed prediction of response status with an accuracy of 76% in the patient population. Finally, we show that glucocorticoid receptor (GR)-regulated genes are significantly enriched in this cluster of antidepressant-response genes. Our findings point to the involvement of GR sensitivity as a potential key mechanism shaping response to antidepressant treatment and support the hypothesis that antidepressants could stimulate resilience-promoting molecular mechanisms. Our data highlight the suitability of an appropriate animal experimental approach for the discovery of treatment response-associated pathways across species.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Paroxetina/farmacologia , Receptores de Glucocorticoides/fisiologia , Animais , Antidepressivos/uso terapêutico , Biomarcadores Farmacológicos , Encéfalo/metabolismo , Corticosterona/sangue , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos DBA , Família Multigênica , Paroxetina/metabolismo , Paroxetina/uso terapêutico , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo
3.
Nat Commun ; 8(1): 1725, 2017 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-29170369

RESUMO

The co-chaperone FKBP5 is a stress-responsive protein-regulating stress reactivity, and its genetic variants are associated with T2D related traits and other stress-related disorders. Here we show that FKBP51 plays a role in energy and glucose homeostasis. Fkbp5 knockout (51KO) mice are protected from high-fat diet-induced weight gain, show improved glucose tolerance and increased insulin signaling in skeletal muscle. Chronic treatment with a novel FKBP51 antagonist, SAFit2, recapitulates the effects of FKBP51 deletion on both body weight regulation and glucose tolerance. Using shorter SAFit2 treatment, we show that glucose tolerance improvement precedes the reduction in body weight. Mechanistically, we identify a novel association between FKBP51 and AS160, a substrate of AKT2 that is involved in glucose uptake. FKBP51 antagonism increases the phosphorylation of AS160, increases glucose transporter 4 expression at the plasma membrane, and ultimately enhances glucose uptake in skeletal myotubes. We propose FKBP51 as a mediator between stress and T2D development, and potential target for therapeutic approaches.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Transporte Biológico Ativo , Dieta Hiperlipídica , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Modelos Biológicos , Fibras Musculares Esqueléticas/metabolismo , Fosforilação , Transdução de Sinais , Estresse Fisiológico , Proteínas de Ligação a Tacrolimo/deficiência , Proteínas de Ligação a Tacrolimo/genética , Aumento de Peso
4.
Sci Rep ; 7(1): 15788, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29150633

RESUMO

Fewer than 50% of all patients with major depressive disorder (MDD) treated with currently available antidepressants (ADs) show full remission. Moreover, about one third of the patients suffering from MDD does not respond to conventional ADs and develop treatment-resistant depression (TRD). Ketamine, a non-competitive, voltage-dependent N-Methyl-D-aspartate receptor (NMDAR) antagonist, has been shown to have a rapid antidepressant effect, especially in patients suffering from TRD. Hippocampi of ketamine-treated mice were analysed by metabolome and proteome profiling to delineate ketamine treatment-affected molecular pathways and biosignatures. Our data implicate mitochondrial energy metabolism and the antioxidant defense system as downstream effectors of the ketamine response. Specifically, ketamine tended to downregulate the adenosine triphosphate (ATP)/adenosine diphosphate (ADP) metabolite ratio which strongly correlated with forced swim test (FST) floating time. Furthermore, we found increased levels of enzymes that are part of the 'oxidative phosphorylation' (OXPHOS) pathway. Our study also suggests that ketamine causes less protein damage by rapidly decreasing reactive oxygen species (ROS) production and lend further support to the hypothesis that mitochondria have a critical role for mediating antidepressant action including the rapid ketamine response.


Assuntos
Antidepressivos/uso terapêutico , Antioxidantes/metabolismo , Metabolismo Energético , Ketamina/uso terapêutico , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Adenilato Quinase/metabolismo , Animais , Depressão/tratamento farmacológico , Depressão/metabolismo , Análise Discriminante , Metabolismo Energético/efeitos dos fármacos , Hipocampo/metabolismo , Análise dos Mínimos Quadrados , Camundongos Endogâmicos C57BL , Análise Multivariada , Fosforilação Oxidativa , Fosforilação , Fatores de Tempo
5.
J Psychiatr Res ; 68: 261-9, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26228428

RESUMO

Although mental disorders as major depression are highly prevalent worldwide their underlying causes remain elusive. Despite the high heritability of depression and a clear genetic contribution to the disease, the identification of genetic risk factors for depression has been very difficult. The first published candidate to reach genome-wide significance in depression was SLC6A15, a neuronal amino acid transporter. With a reported 1,42 fold increased risk of suffering from depression associated with a single nucleotide polymorphism (SNP) in a regulatory region of SLC6A15, the polymorphism was also found to affect hippocampal morphology, integrity, and hippocampus-dependent memory. However, the function of SLC6A15 in the brain is so far largely unknown. To address this question, we investigated if alterations in SLC6A15 expression, either using a full knockout or a targeted hippocampal overexpression, affect hippocampal neurochemistry and consequently behavior. We could show that a lack of SLC6A15 reduced hippocampal tissue levels of proline and other neutral amino acids. In parallel, we observed a decreased overall availability of tissue glutamate and glutamine, while at the same time the basal tone of extracellular glutamate in the hippocampus was increased. By contrast, SLC6A15 overexpression increased glutamate/glutamine tissue concentrations. These neurochemical alterations could be linked to behavioral abnormalities in sensorimotor gating, a key translational endophenotype relevant for many psychiatric disorders. Overall, our data supports SLC6A15 as a crucial factor controlling amino acid content in the hippocampus, thereby likely interfering with glutamatergic transmission and behavior. These findings emphasize SLC6A15 as pivotal risk factor for vulnerability to psychiatric diseases.


Assuntos
Sistemas de Transporte de Aminoácidos Neutros/fisiologia , Comportamento Animal/fisiologia , Ácido Glutâmico/metabolismo , Hipocampo/metabolismo , Filtro Sensorial/fisiologia , Sistemas de Transporte de Aminoácidos Neutros/genética , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Hipocampo/anatomia & histologia , Hipocampo/química , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Prolina/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais
6.
Neuropsychopharmacology ; 40(5): 1222-33, 2015 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-25409593

RESUMO

Stress-induced psychiatric disorders, such as depression, have recently been linked to changes in glutamate transmission in the central nervous system. Glutamate signaling is mediated by a range of receptors, including metabotropic glutamate receptors (mGluRs). In particular, mGluR subtype 5 (mGluR5) is highly implicated in stress-induced psychopathology. The major scaffold protein Homer1 critically interacts with mGluR5 and has also been linked to several psychopathologies. Yet, the specific role of Homer1 in this context remains poorly understood. We used chronic social defeat stress as an established animal model of depression and investigated changes in transcription of Homer1a and Homer1b/c isoforms and functional coupling of Homer1 to mGluR5. Next, we investigated the consequences of Homer1 deletion, overexpression of Homer1a, and chronic administration of the mGluR5 inverse agonist CTEP (2-chloro-4-((2,5-dimethyl-1-(4-(trifluoromethoxy)phenyl)-1H-imidazol-4-yl)ethynyl)pyridine) on the effects of chronic stress. In mice exposed to chronic stress, Homer1b/c, but not Homer1a, mRNA was upregulated and, accordingly, Homer1/mGluR5 coupling was disrupted. We found a marked hyperactivity behavior as well as a dysregulated hypothalamic-pituitary-adrenal axis activity in chronically stressed Homer1 knockout (KO) mice. Chronic administration of the selective and orally bioavailable mGluR5 inverse agonist, CTEP, was able to recover behavioral alterations induced by chronic stress, whereas overexpression of Homer1a in the hippocampus led to an increased vulnerability to chronic stress, reflected in an increased physiological response to stress as well as enhanced depression-like behavior. Overall, our results implicate the glutamatergic system in the emergence of stress-induced psychiatric disorders, and support the Homer1/mGluR5 complex as a target for the development of novel antidepressant agents.


Assuntos
Proteínas de Transporte/metabolismo , Transtorno Depressivo/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Resiliência Psicológica , Estresse Psicológico/metabolismo , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proteínas de Transporte/genética , Doença Crônica , Modelos Animais de Doenças , Dominação-Subordinação , Agonismo Inverso de Drogas , Antagonistas de Aminoácidos Excitatórios/farmacologia , Proteínas de Arcabouço Homer , Imidazóis/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Isoformas de Proteínas , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5/antagonistas & inibidores , Resiliência Psicológica/efeitos dos fármacos
7.
Psychoneuroendocrinology ; 48: 98-110, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24998413

RESUMO

Understanding the molecular mechanisms by which stress is translated into changes in complex behavior may help to identify novel treatment strategies for stress-associated psychiatric disorders. The tumor suppressor gene down-regulated in renal cell carcinoma 1 (DRR1) was recently characterized as a new molecular link between stress, synaptic efficacy and behavioral performance, most likely through its ability to modulate actin dynamics. The lateral septum is one of the brain regions prominently involved in the stress response. This brain region features high DRR1 expression in adult mice, even under basal conditions. We therefore aimed to characterize and dissect the functional role of septal DRR1 in modulating complex behavior. DRR1 protein expression was shown to be expressed in both neurons and astrocytes of the lateral septum of adult mice. Septal DRR1 mRNA expression increased after acute defeat stress and glucocorticoid receptor activation. To mimic the stress-induced DRR1 increase in the lateral septum of mice, we performed adenovirus-mediated region-specific overexpression of DRR1 and characterized the behavior of these mice. Overexpression of DRR1 in the septal region increased sociability, but did not change cognitive, anxiety-like or anhedonic behavior. The observed changes in social behavior did not involve alterations of the expression of vasopressin or oxytocin receptors, the canonical social neuropeptidergic circuits of the lateral septum. In summary, our data suggest that the stress-induced increase of DRR1 expression in the lateral septum could be a protective mechanism to buffer or counterbalance negative consequences of stress exposure on social behavior.


Assuntos
Comportamento Animal , Transtornos Mentais/genética , Comportamento Social , Proteínas Supressoras de Tumor/fisiologia , Actinas/metabolismo , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Dexametasona/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Estresse Psicológico/genética , Estresse Psicológico/fisiopatologia
8.
J Endocrinol ; 222(1): 15-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24781256

RESUMO

While it is known that stress promotes obesity, the effects of stress within an obesogenic context are not so clear and molecular targets at the interface remain elusive. The FK506-binding protein 51 (FKBP51, gene: Fkbp5) has been identified as a target gene implicated in the development of stress-related psychiatric disorders and is a possible candidate for involvement in stress and metabolic regulation. The aims of the current study are to investigate the interaction between chronic stress and an obesogenic context and to additionally examine whether FKBP51 is involved in this interaction. For this purpose, male C57BL/6 mice were exposed to a high-fat diet for 8 weeks before being challenged with chronic social defeat stress. Herein, we demonstrate that chronic stress induces hypophagia and weight loss, ultimately improving features arising from an obesogenic context, including glucose tolerance and levels of insulin and leptin. We show that Fkbp5 expression is responsive to diet and stress in the hypothalamus and hippocampus respectively. Furthermore, under basal conditions, higher levels of hypothalamic Fkbp5 expression were related to increased body weight gain. Our data indicate that Fkbp5 may represent a novel target in metabolic regulation.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/etiologia , Obesidade/fisiopatologia , Estresse Psicológico/fisiopatologia , Proteínas de Ligação a Tacrolimo/fisiologia , Animais , Corticosterona/sangue , Modelos Animais de Doenças , Metabolismo Energético/fisiologia , Glucose/metabolismo , Hipocampo/fisiologia , Hipotálamo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Aumento de Peso/fisiologia
9.
Endocrinology ; 155(7): 2500-10, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24773341

RESUMO

Chronic stress is a risk factor for psychiatric disorders but does not necessarily lead to uniform long-term effects on mental health, suggesting modulating factors such as genetic predispositions. Here we address the question whether natural genetic variations in the mouse CRH receptor 1 (Crhr1) locus modulate the effects of adolescent chronic social stress (ACSS) on long-term stress hormone dysregulation in outbred CD1 mice, which allows a better understanding of the currently reported genes × environment interactions of early trauma and CRHR1 in humans. We identified 2 main haplotype variants in the mouse Crhr1 locus that modulate the long-term effects of ACSS on basal hypothalamic-pituitary-adrenal axis activity. This effect is likely mediated by higher levels of CRHR1, because Crhr1 mRNA expression and CRHR1 binding were enhanced in risk haplotype carriers. Furthermore, a CRHR1 receptor antagonist normalized these long-term effects. Deep sequencing of the Crhr1 locus in CD1 mice revealed a large number of linked single-nucleotide polymorphisms with some located in important regulatory regions, similar to the location of human CRHR1 variants implicated in modulating gene × stress exposure interactions. Our data support that the described gene × stress exposure interaction in this animal model is based on naturally occurring genetic variations in the Crhr1 gene associated with enhanced CRHR1-mediated signaling. Our results suggest that patients with a specific genetic predisposition in the CRHR1 gene together with an exposure to chronic stress may benefit from a treatment selectively antagonizing CRHR1 hyperactivity.


Assuntos
Predisposição Genética para Doença/genética , Polimorfismo de Nucleotídeo Único , Receptores de Hormônio Liberador da Corticotropina/genética , Estresse Psicológico/genética , Animais , Comportamento Animal/efeitos dos fármacos , Ligação Competitiva , Corticosterona/sangue , Feminino , Expressão Gênica , Frequência do Gene , Interação Gene-Ambiente , Genótipo , Haplótipos , Humanos , Sistema Hipotálamo-Hipofisário/metabolismo , Hibridização In Situ , Masculino , Camundongos , Hipófise/metabolismo , Sistema Hipófise-Suprarrenal/metabolismo , Pirazóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Sequências Reguladoras de Ácido Nucleico/genética , Transdução de Sinais/genética , Triazinas/farmacologia
10.
Eur Neuropsychopharmacol ; 24(6): 907-18, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24589292

RESUMO

Chronic stress is one of the predominant environmental risk factors for a number of psychiatric disorders, particularly for major depression. Different hypotheses have been formulated to address the interaction between early and adult chronic stress in psychiatric disease vulnerability. The match/mismatch hypothesis of psychiatric disease states that the early life environment shapes coping strategies in a manner that enables individuals to optimally face similar environments later in life. We tested this hypothesis in female Balb/c mice that underwent either stress or enrichment early in life and were in adulthood further subdivided in single or group housed, in order to provide aversive or positive adult environments, respectively. We studied the effects of the environmental manipulation on anxiety-like, depressive-like and sociability behaviors and gene expression profiles. We show that continuous exposure to adverse environments (matched condition) is not necessarily resulting in an opposite phenotype compared to a continuous supportive environment (matched condition). Rather, animals with mismatched environmental conditions behaved differently from animals with matched environments on anxious, social and depressive like phenotypes. These results further support the match/mismatch hypothesis and illustrate how mild or moderate aversive conditions during development can shape an individual to be optimally adapted to similar conditions later in life.


Assuntos
Transtornos de Ansiedade/etiologia , Transtorno Depressivo/etiologia , Meio Ambiente , Modelos Psicológicos , Comportamento Social , Estresse Psicológico/complicações , Adaptação Psicológica , Glândulas Suprarrenais/fisiopatologia , Sistemas de Transporte de Aminoácidos Neutros/metabolismo , Animais , Transtornos de Ansiedade/fisiopatologia , Transtornos de Ansiedade/psicologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Corticosterona/sangue , Transtorno Depressivo/fisiopatologia , Transtorno Depressivo/psicologia , Modelos Animais de Doenças , Ciclo Estral/fisiologia , Feminino , Hipocampo/fisiopatologia , Abrigo para Animais , Camundongos Endogâmicos BALB C , Testes Neuropsicológicos , Fenótipo , Isolamento Social/psicologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Timo/fisiopatologia
11.
PLoS One ; 9(1): e85975, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24465821

RESUMO

Loss of motivation and learning impairments are commonly accepted core symptoms of psychiatric disorders such as depression and schizophrenia. Reward-motivated learning is dependent on the hippocampal formation but the molecular mechanisms that lead to functional incentive motivation in this brain region are still largely unknown. Recent evidence implicates neurotransmission via metabotropic glutamate receptors and Homer1, their interaction partner in the postsynaptic density, in drug addiction and motivational learning. As previous reports mainly focused on the prefrontal cortex and the nucleus accumbens, we now investigated the role of hippocampal Homer1 in operant reward learning in the present study. We therefore tested either Homer1 knockout mice or mice that overexpress Homer1 in the hippocampus in an operant conditioning paradigm. Our results show that deletion of Homer1 leads to a diverging phenotype that either displays an inability to perform the task or outstanding hyperactivity in both learning and motivational sessions. Due to the apparent bimodal distribution of this phenotype, the overall effect of Homer1 deletion in this paradigm is not significantly altered. Overexpression of hippocampal Homer1 did not lead to a significantly altered learning performance in any stage of the testing paradigm, yet may subtly contribute to emerging motivational deficits. Our results indicate an involvement of Homer1-mediated signaling in the hippocampus in motivation-based learning tasks and encourage further investigations regarding the specific molecular underpinnings of the phenotypes observed in this study. We also suggest to cautiously interpret the results of this and other studies regarding the phenotype following Homer1 manipulations in animals, since their behavioral phenotype appears to be highly diverse. Future studies would benefit from larger group sizes that would allow splitting the experimental groups in responders and non-responders.


Assuntos
Comportamento Animal , Proteínas de Transporte/metabolismo , Condicionamento Operante , Hipocampo/metabolismo , Motivação , Animais , Proteínas de Arcabouço Homer , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Análise e Desempenho de Tarefas
12.
Dis Markers ; 35(1): 23-31, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24167346

RESUMO

Major depression, affecting an estimated 350 million people worldwide, poses a serious social and economic threat to modern societies. There are currently two major problems calling for innovative research approaches, namely, the absence of biomarkers predicting antidepressant response and the lack of conceptually novel antidepressant compounds. Both, biomarker predicting a priori whether an individual patient will respond to the treatment of choice as well as an early distinction of responders and nonresponders during antidepressant therapy can have a significant impact on improving this situation. Biosignatures predicting antidepressant response a priori or early in treatment would enable an evidence-based decision making on available treatment options. However, research to date does not identify any biologic or genetic predictors of sufficient clinical utility to inform the selection of specific antidepressant compound for an individual patient. In this review, we propose an optimized translational research strategy to overcome some of the major limitations in biomarker discovery. We are confident that early transfer and integration of data between both species, ideally leading to mutual supportive evidence from both preclinical and clinical studies, are most suitable to address some of the obstacles of current depression research.


Assuntos
Antidepressivos/farmacologia , Transtorno Depressivo Maior/tratamento farmacológico , Animais , Antidepressivos/uso terapêutico , Biomarcadores/metabolismo , Transtorno Depressivo Maior/genética , Transtorno Depressivo Maior/metabolismo , Epigênese Genética , Interação Gene-Ambiente , Humanos , Metaboloma/efeitos dos fármacos , MicroRNAs/genética , MicroRNAs/metabolismo , Proteoma/metabolismo , Transcriptoma/efeitos dos fármacos , Resultado do Tratamento
13.
J Neurosci ; 33(9): 3857-64, 2013 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-23447597

RESUMO

In recent years, the glutamatergic system has been implicated in the development and treatment of psychiatric disorders. Glutamate signaling is processed by different receptors, including metabotropic glutamate receptors (mGluRs), which in turn interact with the scaffolding protein Homer1 to modulate downstream Ca(2+) signaling. Stress is a major risk factor for the incidence of psychiatric diseases, yet acute stress episodes may have diverging effects on individuals. Cognitive impairments have often been shown to occur after episodes of stress, however the specific role of mGluR5/Homer1 signaling in the interaction of stress and cognition has not yet been elucidated. In this study we show that a single episode of social defeat stress is sufficient to specifically induce cognitive impairments in mice 8 h after the stressor without affecting the animals' locomotion or anxiety levels. We also demonstrate that Homer1b/c levels as well as mGluR5/Homer1b/c interactions in the dorsal hippocampus are reduced up to 8 h after stress. Blockade of mGluR5 during the occurrence of social stress was able to rescue the cognitive impairments. In addition, a specific overexpression of Homer1b/c in the dorsal hippocampus also reversed the behavioral phenotype, indicating that both mGluR5 and Homer1b/c play a crucial role in the mediation of the stress effects. In summary, we could demonstrate that stress induces a cognitive deficit that is likely mediated by mGluR5/Homer1 signaling in the hippocampus. These findings help to reveal the underlying effects of cognitive impairments in patients suffering from stress-related psychiatric disorders.


Assuntos
Proteínas de Transporte/metabolismo , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Hipocampo/metabolismo , Estresse Psicológico/complicações , Análise de Variância , Animais , Proteínas de Transporte/biossíntese , Proteínas de Transporte/genética , Transtornos Cognitivos/terapia , Dexametasona/farmacologia , Antagonistas de Aminoácidos Excitatórios/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Terapia Genética , Vetores Genéticos/genética , Glucocorticoides/farmacologia , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Hipocampo/efeitos dos fármacos , Proteínas de Arcabouço Homer , Imunoprecipitação , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Piridinas/farmacologia , RNA Mensageiro/metabolismo , Receptor de Glutamato Metabotrópico 5 , Receptores de Glutamato Metabotrópico/genética , Receptores de Glutamato Metabotrópico/metabolismo , Reconhecimento Psicológico , Recompensa , Transdução de Sinais/fisiologia , Percepção Espacial/efeitos dos fármacos , Tiazóis/farmacologia
14.
Neuropsychopharmacology ; 37(13): 2797-808, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22871917

RESUMO

Various clinical studies have identified FK506-binding protein 51 (FKBP51) as a target gene involved in the development of psychiatric disorders such as depression. Furthermore, FKBP51 has been shown to affect glucocorticoid receptor signaling by sensitivity modulation and it is implicated in stress reactivity as well as in molecular mechanisms of stress vulnerability and resilience. We investigated the physiological, behavioral, and neuroendocrine parameters in an established chronic stress model both directly after stress and after a recovery period of 3 weeks and also studied the efficacy of paroxetine in this model. We then examined FKBP51 mRNA levels in the dorsal and ventral part of the hippocampus and correlated the expression to behavioral and endocrine parameters. We show robust chronic stress effects in physiological, behavioral, and neuroendocrine parameters, which were only slightly affected by paroxetine treatment. On the contrary, paroxetine led to a disruption of the neuroendocrine system. FKBP51 expression was significantly increased directly after the stress period and correlated with behavioral and neuroendocrine parameters. Taken together, we were able to further elucidate the role of FKBP51 in the mechanisms of stress resilience and vulnerability, especially with respect to behavioral and neuroendocrine parameters. These findings strongly support the concept of FKBP51 as a marker for glucocorticoid receptor sensitivity and its involvement in the development of psychiatric disorders.


Assuntos
Paroxetina/uso terapêutico , Comportamento Social , Estresse Psicológico/tratamento farmacológico , Estresse Psicológico/metabolismo , Proteínas de Ligação a Tacrolimo/metabolismo , Animais , Antidepressivos de Segunda Geração/uso terapêutico , Depressão/tratamento farmacológico , Depressão/metabolismo , Depressão/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estresse Psicológico/psicologia , Resultado do Tratamento
15.
Eur J Neurosci ; 36(3): 2360-7, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22672268

RESUMO

Early-life stress may lead to persistent changes in central corticotropin-releasing hormone (CRH) and the CRH receptor 1 (CRHR1) system that modulates anxiety-related behavior. However, it remains unknown whether CRH-CRHR1 signaling is involved in early-life stress-induced anxiety-related behavior in adult animals. In the present study, we used conditional forebrain CRHR1 knockout (CRHR1-CKO) mice and examined the potential role of forebrain CRHR1 in the anxiogenic effects of early-life stress. As adults, wild-type mice that received unstable maternal care during the first postnatal week showed reduced body weight gain and increased anxiety levels in the open field test, which were prevented in stressed CRHR1-CKO mice. In the light-dark box test, control CRHR1-CKO mice were less anxious, but early-life stress increased anxiety levels in both wild-type and CRHR1-CKO mice. In the elevated plus maze test, early-life stress had only subtle effects on anxiety-related behavior. Moreover, early-life stress did not alter the basal home cage activity and gene expression levels of key hypothalamic-pituitary-adrenal axis regulators in adult wild-type and CRHR1-CKO mice, but enhanced neuroendocrine reactivity to acute immobilization stress in CRHR1-CKO mice. Our findings highlight the importance of forebrain CRHR1 in modulating some of the anxiogenic effects of early-life stress, and suggest that other neural circuits are also involved in the programming effects of early-life stress on anxiety-related behavior.


Assuntos
Ansiedade/metabolismo , Prosencéfalo/metabolismo , Receptores de Hormônio Liberador da Corticotropina/fisiologia , Estresse Psicológico/complicações , Idade de Início , Animais , Ansiedade/etiologia , Ansiedade/genética , Ansiedade/psicologia , Comportamento Animal , Hormônio Liberador da Corticotropina/metabolismo , Sistema Hipotálamo-Hipofisário/metabolismo , Privação Materna , Camundongos , Camundongos Knockout , Sistema Hipófise-Suprarrenal/metabolismo , Prosencéfalo/fisiologia , Receptores de Hormônio Liberador da Corticotropina/genética , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...