Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 14(6): e0217516, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31194746

RESUMO

The high concentration of arsenic (As) in rice grains, in a large proportion of the rice growing areas, is a critical issue. This study explores the feasibility of conventional (QTL-based) marker-assisted selection and genomic selection to improve the ability of rice to prevent As uptake and accumulation in the edible grains. A japonica diversity panel (RP) of 228 accessions phenotyped for As concentration in the flag leaf (FL-As) and in the dehulled grain (CG-As), and genotyped at 22,370 SNP loci, was used to map QTLs by association analysis (GWAS) and to train genomic prediction models. Similar phenotypic and genotypic data from 95 advanced breeding lines (VP) with japonica genetic backgrounds, was used to validate related QTLs mapped in the RP through GWAS and to evaluate the predictive ability of across populations (RP-VP) genomic estimate of breeding value (GEBV) for As exclusion. Several QTLs for FL-As and CG-As with a low-medium individual effect were detected in the RP, of which some colocalized with known QTLs and candidate genes. However, less than 10% of those QTLs could be validated in the VP without loosening colocalization parameters. Conversely, the average predictive ability of across populations GEBV was rather high, 0.43 for FL-As and 0.48 for CG-As, ensuring genetic gains per time unit close to phenotypic selection. The implications of the limited robustness of the GWAS results and the rather high predictive ability of genomic prediction are discussed for breeding rice for significantly low arsenic uptake and accumulation in the edible grains.


Assuntos
Arsênio/efeitos adversos , Marcadores Genéticos/genética , Oryza/genética , Cruzamento/métodos , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Grão Comestível/genética , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Genótipo , Oryza/metabolismo , Locos de Características Quantitativas/genética
2.
PLoS One ; 13(1): e0190964, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29342194

RESUMO

Salinity tolerance is an important quality for European rice grown in river deltas. We evaluated the salinity tolerance of a panel of 235 temperate japonica rice accessions genotyped with 30,000 SNP markers. The panel was exposed to mild salt stress (50 mM NaCl; conductivity of 6 dS m-1) at the seedling stage. Eight different root and shoot growth parameters were measured for both the control and stressed treatments. The Na+ and K+ mass fractions of the stressed plants were measured using atomic absorption spectroscopy. The salt treatment affected plant growth, particularly the shoot parameters. The panel showed a wide range of Na+/K+ ratio and the temperate accessions were distributed over an increasing axis, from the most resistant to the most susceptible checks. We conducted a genome-wide association study on indices of stress response and ion mass fractions in the leaves using a classical mixed model controlling structure and kinship. A total of 27 QTLs validated by sub-sampling were identified. For indices of stress responses, we also used another model that focused on marker × treatment interactions and detected 50 QTLs, three of which were also identified using the classical method. We compared the positions of the significant QTLs to those of approximately 300 genes that play a role in rice salt tolerance. The positions of several QTLs were close to those of genes involved in calcium signaling and metabolism, while other QTLs were close to those of kinases. These results reveal the salinity tolerance of accessions with a temperate japonica background. Although the detected QTLs must be confirmed by other approaches, the number of associations linked to candidate genes involved in calcium-mediated ion homeostasis highlights pathways to explore in priority to understand the salinity tolerance of temperate rice.


Assuntos
Adaptação Fisiológica , Sinalização do Cálcio/genética , Genes de Plantas , Estudo de Associação Genômica Ampla , Oryza/fisiologia , Salinidade , Estresse Fisiológico , Oryza/genética , Oryza/metabolismo , Locos de Características Quantitativas , Espectrofotometria Atômica
3.
Plant Cell Rep ; 32(3): 359-68, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23179461

RESUMO

KEY MESSAGE : The long-term proliferation of embryogenic cell suspensions of oil palm is associated with changes in both genomic methylation rates and embryogenic capacities. In the aim of exploring the relationship between epigenetic stability and the long-term in vitro proliferation of plant tissues, we have studied changes in genomic DNA methylation levels in embryogenic suspensions of oil palm (Elaeis guineensis Jacq.). Five embryogenic callus lines were obtained from selected hybrid seeds and then proliferated as suspension cultures. Each clonal line obtained from a single genotype was subdivided into three independent subclonal lines. Once established, cultures proliferated for 12 months and genomic DNA was sampled at 4 months intervals for the estimation of global DNA methylation rates through high performance liquid chromatography (HPLC) quantitation of deoxynucleosides. Our results show that in vitro proliferation induces DNA hypermethylation in a time-dependent fashion. Moreover, this trend is statistically significant in several clonal lines and shared between subclonal lines originating from the same genotype. Interestingly, the only clonal line undergoing loss of genomic methylation in the course of proliferation has been found unable to generate somatic embryos. We discuss the possible implications of genome-wide DNA methylation changes in proliferating cells with a view to the maintenance of genomic and epigenomic stability.


Assuntos
Arecaceae/genética , Metilação de DNA , Epigênese Genética , Arecaceae/fisiologia , Células Cultivadas , Cromatografia Líquida de Alta Pressão , Metilação de DNA/genética , DNA de Plantas/genética , Genômica , Técnicas de Embriogênese Somática de Plantas , Sementes/genética , Sementes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...