Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuro Oncol ; 2024 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554031

RESUMO

BACKGROUND: Pediatric high-grade gliomas (pHGGs), including diffuse midline gliomas (DMGs), are aggressive pediatric tumors with one of the poorest prognoses. Delta-24-RGD and ONC201 have shown promising efficacy as single agents for these tumors. However, the combination of both agents has not been evaluated. METHODS: The production of functional viruses was assessed by immunoblotting and replication assays. The antitumor effect was evaluated in a panel of human and murine pHGG and DMG cell lines. RNAseq, the seahorse stress test, mitochondrial DNA content, and γH2A.X immunofluorescence were used to perform mechanistic studies. Mouse models of both diseases were used to assess the efficacy of the combination in vivo. The tumor immune microenvironment was evaluated using flow cytometry, RNAseq and multiplexed immunofluorescence staining. RESULTS: The Delta-24-RGD/ONC201 combination did not affect the virus replication capability in human pHGG and DMG models in vitro. Cytotoxicity analysis showed that the combination treatment was either synergistic or additive. Mechanistically, the combination treatment increased nuclear DNA damage and maintained the metabolic perturbation and mitochondrial damage caused by each agent alone. Delta-24-RGD/ONC201 cotreatment extended the overall survival of mice implanted with human and murine pHGG and DMG cells, independent of H3 mutation status and location. Finally, combination treatment in murine DMG models revealed a reshaping of the tumor microenvironment to a proinflammatory phenotype. CONCLUSIONS: The Delta-24-RGD/ONC201 combination improved the efficacy compared to each agent alone in in vitro and in vivo models by potentiating nuclear DNA damage and in turn improving the antitumor (immune) response to each agent alone.

2.
Methods Cell Biol ; 185: 99-113, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38556454

RESUMO

Radiotherapy is a crucial treatment modality for cancer patients, with approximately 60% of individuals undergoing ionizing radiation as part of their disease management. In recent years, there has been a growing trend toward minimizing irradiation fields through the use of image-guided dosimetry and innovative technologies. These advancements allow for selective irradiation, delivering higher local doses while reducing the number of treatment sessions. Consequently, computer-assisted methods have significantly enhanced the effectiveness of radiotherapy in the curative and palliative treatment of various cancers. Although radiation therapy alone can effectively achieve local control in some cancer types, it may not be sufficient for others. As a result, further preclinical research is necessary to explore novel approaches including new schedules of radiotherapy treatments. Unfortunately, there is a concerning lack of correlation between clinical outcomes and experiments conducted on mouse models. We hypothesize that this disparity arises from the differences in irradiation strategies employed in preclinical studies compared to those used in clinical practice, which ultimately affects the translatability of findings to patients. In this study, we present two comprehensive radiotherapy protocols for the treatment of orthotopic melanoma and glioblastoma tumors. These protocols utilize a small animal radiation research platform, which is an ideal radiation device for delivering localized and precise X-ray doses to the tumor mass. By employing these platforms, we aim to limit the side effects associated with irradiating healthy surrounding tissues. Our detailed protocols offer a valuable framework for conducting preclinical studies that closely mimic clinical radiotherapy techniques, bridging the gap between experimental results and patient outcomes.


Assuntos
Glioblastoma , Radioterapia Guiada por Imagem , Camundongos , Humanos , Animais , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia Guiada por Imagem/métodos , Glioblastoma/patologia , Glioblastoma/radioterapia , Modelos Animais de Doenças
3.
STAR Protoc ; 5(1): 102803, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38159270

RESUMO

The immune response is a fundamental process in the treatment of solid tumors. Here, we present a protocol for implanting diffuse midline glioma cells in the brain of immune-competent mice and characterizing the different immune populations in the tumor microenvironment in a flow cytometry panel. We describe steps for processing of brain tumors, isolating the immune cells, and subsequent staining with antibodies for flow cytometry. We then detail procedures for implementing the gating strategy. For complete details on the use and execution of this protocol, please refer to Ausejo-Mauleon et al.1.


Assuntos
Glioma , Microambiente Tumoral , Animais , Camundongos , Citometria de Fluxo , Anticorpos , Encéfalo , Modelos Animais de Doenças
4.
Cancer Cell ; 41(11): 1911-1926.e8, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37802053

RESUMO

Diffuse intrinsic pontine glioma (DIPG) is an aggressive brain stem tumor and the leading cause of pediatric cancer-related death. To date, these tumors remain incurable, underscoring the need for efficacious therapies. In this study, we demonstrate that the immune checkpoint TIM-3 (HAVCR2) is highly expressed in both tumor cells and microenvironmental cells, mainly microglia and macrophages, in DIPG. We show that inhibition of TIM-3 in syngeneic models of DIPG prolongs survival and produces long-term survivors free of disease that harbor immune memory. This antitumor effect is driven by the direct effect of TIM-3 inhibition in tumor cells, the coordinated action of several immune cell populations, and the secretion of chemokines/cytokines that create a proinflammatory tumor microenvironment favoring a potent antitumor immune response. This work uncovers TIM-3 as a bona fide target in DIPG and supports its clinical translation.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Glioma , Humanos , Criança , Glioma/patologia , Memória Imunológica , Receptor Celular 2 do Vírus da Hepatite A , Neoplasias do Tronco Encefálico/tratamento farmacológico , Neoplasias do Tronco Encefálico/patologia , Microambiente Tumoral
5.
Methods Cell Biol ; 174: 1-16, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36710044

RESUMO

The immunomodulatory properties of local hypofractionated radiotherapy are known to promote the generation of anti-tumor immune responses. Such responses are largely due to the infiltration of cytotoxic lymphocytes (TILs) into the tumors that are able to destroy malignant lesions. In this context, characterizing the tumor immune microenvironment following radiotherapy is crucial for the study of its mechanism of action. Flow cytometry-based analyses are frequently used to elucidate changes in the tumor immune microenvironment. The use of a fluorochrome-conjugated antibody panel is currently a standard technique to assess the number and phenotype of immune cell populations infiltrating the tumors. Here, we describe a method to isolate and quantify TILs based on flow-cytometry in mammary carcinoma-bearing mice that undergo a local hypofractionated radiotherapy regimen consisting of 3 consecutive doses of 8 Gy. With some adaptations, this protocol can be successfully applied to a diverse range of transplantable and inducible solid mouse tumors of different origins.


Assuntos
Neoplasias , Camundongos , Animais , Citometria de Fluxo , Neoplasias/patologia , Linfócitos do Interstício Tumoral/patologia , Microambiente Tumoral
6.
Methods Cell Biol ; 172: 179-189, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36064224

RESUMO

The rapid proliferation of cancer cells and the aberrant vasculature present in most solid tumors frequently result in the lack of oxygen generating a hypoxic tumor microenvironment. Low levels of oxygen not only affect the tumor cell biology and tumorigenesis, but also the other components of the tumor microenvironment such as the tumor stroma and the immune infiltrate, promoting a more suppressive environment. In addition, tumor hypoxia has been associated with reduced sensitivity to chemotherapy (CH) and radiotherapy (RT), leading to poor outcomes in cancer patients. Therefore, the evaluation of tumor oxygen status has become clinically relevant. Tumor hypoxia can be assessed by different methods that include the analysis of the oxygen concentration or the expression of endogenous markers directly related to hypoxia. In this paper, we focus on the use of the hypoxia-specific marker pimonidazole as a straightforward way to measure tumor hypoxia following radiotherapy in a preclinical melanoma model.


Assuntos
Hipóxia , Neoplasias , Biomarcadores/metabolismo , Hipóxia Celular , Humanos , Hipóxia/metabolismo , Neoplasias/radioterapia , Nitroimidazóis , Oxigênio/metabolismo , Coloração e Rotulagem , Microambiente Tumoral
7.
Mol Ther Oncolytics ; 26: 246-264, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35949950

RESUMO

The outcomes of metastatic and nonresponder pediatric osteosarcoma patients are very poor and have not improved in the last 30 years. These tumors harbor a highly immunosuppressive environment, making existing immunotherapies ineffective. Here, we evaluated the use of Semliki Forest virus (SFV) vectors expressing galectin-3 (Gal3) inhibitors as therapeutic tools, since both the inhibition of Gal3, which is involved in immunosuppression and metastasis, and virotherapy based on SFV have been demonstrated to reduce tumor progression in different tumor models. In vitro, inhibitors based on the Gal3 amino-terminal domain alone (Gal3-N) or fused to a Gal3 peptide inhibitor (Gal3-N-C12) were able to block the binding of Gal3 to the surface of activated T cells. In vivo, SFV expressing Gal3-N-C12 induced strong antitumor responses in orthotopic K7M2 and MOS-J osteosarcoma tumors, leading to complete regressions in 47% and 30% of mice, respectively. Pulmonary metastases were also reduced in K7M2 tumor-bearing mice after treatment with SFV-Gal3-N-C12. Both the antitumor and antimetastatic responses were dependent on modulation of the immune system, primarily including an increase in tumor-infiltrating lymphocytes and a reduction in the immunosuppressive environment inside tumors. Our results demonstrated that SFV-Gal3-N-C12 could constitute a potential therapeutic agent for osteosarcoma patients expressing Gal3.

8.
N Engl J Med ; 386(26): 2471-2481, 2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35767439

RESUMO

BACKGROUND: Pediatric patients with diffuse intrinsic pontine glioma (DIPG) have a poor prognosis, with a median survival of less than 1 year. Oncolytic viral therapy has been evaluated in patients with pediatric gliomas elsewhere in the brain, but data regarding oncolytic viral therapy in patients with DIPG are lacking. METHODS: We conducted a single-center, dose-escalation study of DNX-2401, an oncolytic adenovirus that selectively replicates in tumor cells, in patients with newly diagnosed DIPG. The patients received a single virus infusion through a catheter placed in the cerebellar peduncle, followed by radiotherapy. The primary objective was to assess the safety and adverse-event profile of DNX-2401. The secondary objectives were to evaluate the effect of DNX-2401 on overall survival and quality of life, to determine the percentage of patients who have an objective response, and to collect tumor-biopsy and peripheral-blood samples for correlative studies of the molecular features of DIPG and antitumor immune responses. RESULTS: A total of 12 patients, 3 to 18 years of age, with newly diagnosed DIPG received 1×1010 (the first 4 patients) or 5×1010 (the subsequent 8 patients) viral particles of DNX-2401, and 11 received subsequent radiotherapy. Adverse events among the patients included headache, nausea, vomiting, and fatigue. Hemiparesis and tetraparesis developed in 1 patient each. Over a median follow-up of 17.8 months (range, 5.9 to 33.5), a reduction in tumor size, as assessed on magnetic resonance imaging, was reported in 9 patients, a partial response in 3 patients, and stable disease in 8 patients. The median survival was 17.8 months. Two patients were alive at the time of preparation of the current report, 1 of whom was free of tumor progression at 38 months. Examination of a tumor sample obtained during autopsy from 1 patient and peripheral-blood studies revealed alteration of the tumor microenvironment and T-cell repertoire. CONCLUSIONS: Intratumoral infusion of oncolytic virus DNX-2401 followed by radiotherapy in pediatric patients with DIPG resulted in changes in T-cell activity and a reduction in or stabilization of tumor size in some patients but was associated with adverse events. (Funded by the European Research Council under the European Union's Horizon 2020 Research and Innovation Program and others; EudraCT number, 2016-001577-33; ClinicalTrials.gov number, NCT03178032.).


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Terapia Viral Oncolítica , Vírus Oncolíticos , Adenoviridae , Adolescente , Astrocitoma/radioterapia , Astrocitoma/terapia , Neoplasias do Tronco Encefálico/mortalidade , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/radioterapia , Neoplasias do Tronco Encefálico/terapia , Criança , Pré-Escolar , Glioma Pontino Intrínseco Difuso/mortalidade , Glioma Pontino Intrínseco Difuso/radioterapia , Glioma Pontino Intrínseco Difuso/terapia , Glioma/radioterapia , Glioma/terapia , Humanos , Infusões Intralesionais , Terapia Viral Oncolítica/efeitos adversos , Terapia Viral Oncolítica/métodos , Qualidade de Vida , Microambiente Tumoral
9.
JCI Insight ; 7(7)2022 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-35393952

RESUMO

Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors, and patient survival has not changed despite many therapeutic efforts, emphasizing the urgent need for effective treatments. Here, we evaluated the anti-DIPG effect of the oncolytic adenovirus Delta-24-ACT, which was engineered to express the costimulatory ligand 4-1BBL to potentiate the antitumor immune response of the virus. Delta-24-ACT induced the expression of functional 4-1BBL on the membranes of infected DIPG cells, which enhanced the costimulation of CD8+ T lymphocytes. In vivo, Delta-24-ACT treatment of murine DIPG orthotopic tumors significantly improved the survival of treated mice, leading to long-term survivors that developed immunological memory against these tumors. In addition, Delta-24-ACT was safe and caused no local or systemic toxicity. Mechanistic studies showed that Delta-24-ACT modulated the tumor-immune content, not only increasing the number, but also improving the functionality of immune cells. All of these data highlight the safety and potential therapeutic benefit of Delta-24-ACT the treatment of patients with DIPG.


Assuntos
Neoplasias do Tronco Encefálico , Glioma Pontino Intrínseco Difuso , Terapia Viral Oncolítica , Adenoviridae , Animais , Neoplasias do Tronco Encefálico/genética , Neoplasias do Tronco Encefálico/patologia , Neoplasias do Tronco Encefálico/terapia , Humanos , Camundongos
10.
Mol Cancer Ther ; 21(3): 471-480, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34965961

RESUMO

Osteosarcoma is an aggressive bone tumor occurring primarily in pediatric patients. Despite years of intensive research, the outcomes of patients with metastatic disease or those who do not respond to therapy have remained poor and have not changed in the last 30 years. Oncolytic virotherapy is becoming a reality to treat local and metastatic tumors while maintaining a favorable safety profile. Delta-24-ACT is a replicative oncolytic adenovirus engineered to selectively target cancer cells and to potentiate immune responses through expression of the immune costimulatory ligand 4-1BB. This work aimed to assess the antisarcoma effect of Delta-24-ACT. MTS and replication assays were used to quantify the antitumor effects of Delta-24-ACT in vitro in osteosarcoma human and murine cell lines. Evaluation of the in vivo antitumor effect and immune response to Delta-24-ACT was performed in immunocompetent mice bearing the orthotopic K7M2 cell line. Immunophenotyping of the tumor microenvironment was characterized by immunohistochemistry and flow cytometry. In vitro, Delta-24-ACT killed osteosarcoma cells and triggered the production of danger signals. In vivo, local treatment with Delta-24-ACT led to antitumor effects against both the primary tumor and spontaneous metastases in a murine osteosarcoma model. Viral treatment was safe, with no noted toxicity. Delta-24-ACT significantly increased the median survival time of treated mice. Collectively, our data identify Delta-24-ACT administration as an effective and safe therapeutic strategy for patients with local and metastatic osteosarcoma. These results support clinical translation of this viral immunotherapy approach.


Assuntos
Neoplasias Ósseas , Terapia Viral Oncolítica , Vírus Oncolíticos , Osteossarcoma , Adenoviridae/genética , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/terapia , Linhagem Celular Tumoral , Criança , Humanos , Memória Imunológica , Camundongos , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Osteossarcoma/genética , Osteossarcoma/patologia , Osteossarcoma/terapia , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Immunother Cancer ; 9(7)2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34281988

RESUMO

BACKGROUND: Glioblastoma (GBM) is a devastating primary brain tumor with a highly immunosuppressive tumor microenvironment, and treatment with oncolytic viruses (OVs) has emerged as a promising strategy for these tumors. Our group constructed a new OV named Delta-24-ACT, which was based on the Delta-24-RGD platform armed with 4-1BB ligand (4-1BBL). In this study, we evaluated the antitumor effect of Delta-24-ACT alone or in combination with an immune checkpoint inhibitor (ICI) in preclinical models of glioma. METHODS: The in vitro effect of Delta-24-ACT was characterized through analyses of its infectivity, replication and cytotoxicity by flow cytometry, immunofluorescence (IF) and MTS assays, respectively. The antitumor effect and therapeutic mechanism were evaluated in vivo using several immunocompetent murine glioma models. The tumor microenvironment was studied by flow cytometry, immunohistochemistry and IF. RESULTS: Delta-24-ACT was able to infect and exert a cytotoxic effect on murine and human glioma cell lines. Moreover, Delta-24-ACT expressed functional 4-1BBL that was able to costimulate T lymphocytes in vitro and in vivo. Delta-24-ACT elicited a more potent antitumor effect in GBM murine models than Delta-24-RGD, as demonstrated by significant increases in median survival and the percentage of long-term survivors. Furthermore, Delta-24-ACT modulated the tumor microenvironment, which led to lymphocyte infiltration and alteration of their immune phenotype, as characterized by increases in the expression of Programmed Death 1 (PD-1) on T cells and Programmed Death-ligand 1 (PD-L1) on different myeloid cell populations. Because Delta-24-ACT did not induce an immune memory response in long-term survivors, as indicated by rechallenge experiments, we combined Delta-24-ACT with an anti-PD-L1 antibody. In GL261 tumor-bearing mice, this combination showed superior efficacy compared with either monotherapy. Specifically, this combination not only increased the median survival but also generated immune memory, which allowed long-term survival and thus tumor rejection on rechallenge. CONCLUSIONS: In summary, our data demonstrated the efficacy of Delta-24-ACT combined with a PD-L1 inhibitor in murine glioma models. Moreover, the data underscore the potential to combine local immunovirotherapy with ICIs as an effective therapy for poorly infiltrated tumors.


Assuntos
Antígeno B7-H1/imunologia , Glioblastoma/tratamento farmacológico , Imunidade/imunologia , Imunoterapia/métodos , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Glioblastoma/imunologia , Humanos , Camundongos , Camundongos Nus
12.
Clin Cancer Res ; 27(14): 4054-4065, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33903200

RESUMO

PURPOSE: The incidence of human papillomavirus-associated head and neck squamous cell carcinoma (HPV+-HNSCC) is rising worldwide and although current therapeutic modalities are efficient in the majority of patients, there is a high rate of treatment failures. Thus, novel combination approaches are urgently needed to achieve better disease control in patients with HPV+-HNSCC. We investigated the safety and therapeutic efficacy of a novel fibroblast activation protein (FAP)-targeted CD40 agonist (FAP-CD40) in combination with local hypofractionated radiation in a syngeneic HPV+-HNSCC model. EXPERIMENTAL DESIGN: Using an established orthotopic model, we treated tumor-bearing mice with local hypofractionated radiotherapy (2 × 6 Gy) alone or in combination with a systemic administration of the FAP-CD40 antibody. Following up the mice, we evaluated the changes in the tumor microenvironment (TME) by immunofluorescence, FACS, and NanoString RNA analysis. RESULTS: The suboptimal radiotherapy regimen chosen failed to control tumors in the treated mice. The FAP-CD40 administered in monotherapy transiently controlled tumor growth, whereas the combined therapy induced durable complete responses in more than 80% of the tumor-bearing mice. This notable efficacy relied on the radiotherapy-induced remodeling of the TME and activation of the CD8+ T-cell-cDC1 axis and was devoid of the systemic toxicity frequently associated with CD40-targeted therapy. Moreover, the robust immunologic memory developed effectively prevented tumor relapses, a common feature in patients with HNSCC. CONCLUSIONS: Our study provides proof of concept, as well as mechanistic insights of the therapeutic efficacy of a bispecific FAP-CD40 combined with local radiotherapy in a FAP+-HNSCC model increasing overall survival and inducing long-term antitumor immunity.


Assuntos
Antígenos CD40/agonistas , Endopeptidases/efeitos dos fármacos , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/virologia , Proteínas de Membrana/efeitos dos fármacos , Papillomaviridae/isolamento & purificação , Carcinoma de Células Escamosas de Cabeça e Pescoço/tratamento farmacológico , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço/virologia , Animais , Terapia Combinada , Camundongos
13.
Clin Cancer Res ; 27(14): 4036-4053, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33771854

RESUMO

PURPOSE: CD40 agonists hold great promise for cancer immunotherapy (CIT) as they enhance dendritic cell (DC) activation and concomitant tumor-specific T-cell priming. However, the broad expression of CD40 accounts for sink and side effects, hampering the efficacy of anti-CD40 antibodies. We hypothesized that these limitations can be overcome by selectively targeting CD40 agonism to the tumor. Therefore, we developed a bispecific FAP-CD40 antibody, which induces CD40 stimulation solely in presence of fibroblast activation protein α (FAP), a protease specifically expressed in the tumor stroma. EXPERIMENTAL DESIGN: FAP-CD40's in vitro activity and FAP specificity were validated by antigen-presenting cell (APC) activation and T-cell priming assays. In addition, FAP-CD40 was tested in subcutaneous MC38-FAP and KPC-4662-huCEA murine tumor models. RESULTS: FAP-CD40 triggered a potent, strictly FAP-dependent CD40 stimulation in vitro. In vivo, FAP-CD40 strongly enhanced T-cell inflammation and growth inhibition of KPC-4662-huCEA tumors. Unlike nontargeted CD40 agonists, FAP-CD40 mediated complete regression of MC38-FAP tumors, entailing long-term protection. A high dose of FAP-CD40 was indispensable for these effects. While nontargeted CD40 agonists induced substantial side effects, highly dosed FAP-CD40 was well tolerated. FAP-CD40 preferentially accumulated in the tumor, inducing predominantly intratumoral immune activation, whereas nontargeted CD40 agonists displayed strong systemic but limited intratumoral effects. CONCLUSIONS: FAP-CD40 abrogates the systemic toxicity associated with nontargeted CD40 agonists. This enables administration of high doses, essential for overcoming CD40 sink effects and inducing antitumor immunity. Consequently, FAP-targeted CD40 agonism represents a promising strategy to exploit the full potential of CD40 signaling for CIT.


Assuntos
Antineoplásicos Imunológicos/administração & dosagem , Antígenos CD40/agonistas , Endopeptidases/efeitos dos fármacos , Imunoterapia/métodos , Proteínas de Membrana/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Camundongos , Células Tumorais Cultivadas
14.
Mol Ther Oncolytics ; 20: 23-33, 2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33575468

RESUMO

Osteosarcoma is the most frequent and aggressive bone tumor in children and adolescents, with a long-term survival rate of 30%. Interleukin-12 (IL-12) is a potent cytokine that bridges innate and adaptive immunity, triggers antiangiogenic responses, and achieves potent antitumor effects. In this work, we evaluated the antisarcoma effect of a high-capacity adenoviral vector encoding mouse IL-12. This vector harbored a mifepristone-inducible system for controlled expression of IL-12 (High-Capacity adenoviral vector enconding the EF1α promoter [HCA-EFZP]-IL-12). We found that local administration of the vector resulted in a reduction in the tumor burden, extended overall survival, and tumor eradication. Moreover, long-term survivors exhibited immunological memory when rechallenged with the same tumor cells. Treatment with HCA-EFZP-IL-12 also resulted in a significant decrease in lung metastasis. Immunohistochemical analyses showed profound remodeling of the osteosarcoma microenvironment with decreases in angiogenesis and macrophage and myeloid cell numbers. In summary, our data underscore the potential therapeutic value of IL-12 in the context of a drug-inducible system that allows controlled expression of this cytokine, which can trigger a potent antitumor immune response in primary and metastatic pediatric osteosarcoma.

15.
Clin Cancer Res ; 27(6): 1807-1820, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33376098

RESUMO

PURPOSE: Atypical teratoid/rhabdoid tumors (AT/RT) and central nervous system primitive neuroectodermal tumors (CNS-PNET) are pediatric brain tumors with poor survival and life-long negative side effects. Here, the aim was to characterize the efficacy and safety of the oncolytic adenovirus, Delta-24-RGD, which selectively replicates in and kills tumor cells. EXPERIMENTAL DESIGN: Delta-24-RGD determinants for infection and replication were evaluated in patient expression datasets. Viral replication and cytotoxicity were assessed in vitro in a battery of CNS-PNET and AT/RT cell lines. In vivo, efficacy was determined in different orthotopic mouse models, including early and established tumor models, a disseminated AT/RT lesion model, and immunocompetent humanized mouse models (hCD34+-NSG-SGM3). RESULTS: Delta-24-RGD infected and replicated efficiently in all the cell lines tested. In addition, the virus induced dose-dependent cytotoxicity [IC50 value below 1 plaque-forming unit (PFU)/cell] and the release of immunogenic markers. In vivo, a single intratumoral Delta-24-RGD injection (107 or 108 PFU) significantly increased survival and led to long-term survival in AT/RT and PNET models. Delta-24-RGD hindered the dissemination of AT/RTs and increased survival, leading to 70% of long-term survivors. Of relevance, viral administration to established tumor masses (30 days after engraftment) showed therapeutic benefit. In humanized immunocompetent models, Delta-24-RGD significantly extended the survival of mice bearing AT/RTs or PNETs (ranging from 11 to 27 days) and did not display any toxicity associated with inflammation. Immunophenotyping of Delta-24-RGD-treated tumors revealed increased CD8+ T-cell infiltration. CONCLUSIONS: Delta-24-RGD is a feasible therapeutic option for AT/RTs and CNS-PNETs. This work constitutes the basis for potential translation to the clinical setting.


Assuntos
Neoplasias do Sistema Nervoso Central/terapia , Tumores Neuroectodérmicos Primitivos/terapia , Oligopeptídeos/genética , Terapia Viral Oncolítica/métodos , Vírus Oncolíticos/genética , Tumor Rabdoide/terapia , Teratoma/terapia , Animais , Apoptose , Proliferação de Células , Neoplasias do Sistema Nervoso Central/imunologia , Neoplasias do Sistema Nervoso Central/mortalidade , Neoplasias do Sistema Nervoso Central/patologia , Feminino , Humanos , Imunidade Celular , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Nus , Tumores Neuroectodérmicos Primitivos/imunologia , Tumores Neuroectodérmicos Primitivos/mortalidade , Tumores Neuroectodérmicos Primitivos/patologia , Tumor Rabdoide/imunologia , Tumor Rabdoide/mortalidade , Tumor Rabdoide/patologia , Teratoma/imunologia , Teratoma/mortalidade , Teratoma/patologia , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Front Immunol ; 11: 340, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32174925

RESUMO

In the context of adoptive T cell transfer (ACT) for cancer treatment, it is crucial to generate in vitro large amounts of tumor-specific CD8 T cells with high potential to persist in vivo. PD-1, Tim3, and CD39 have been proposed as markers of tumor-specific tumor-infiltrating CD8 T lymphocytes (CD8 TILs). However, these molecules are highly expressed by terminally differentiated exhausted CD8 T cells (Tex) that lack proliferation potential. Therefore, optimized strategies to isolate tumor-specific TILs with high proliferative potential, such as Tcf1+ precursor exhausted T cells (Tpe) are needed to improve in vivo persistence of ACT. Here we aimed at defining cell surface markers that would unequivocally identify Types for precision cell sorting increasing the purity of tumor-specific PD-1+ Tcf1+ Tpe from total TILs. Transcriptomic analysis of Tpe vs. Tex CD8 TIL subsets from B16 tumors and primary human melanoma tumors revealed that Tpes are enriched in Slamf6 and lack Entpd1 and Havcr2 expression, which encode Slamf6, CD39, and Tim3 cell surface proteins, respectively. Indeed, we observed by flow cytometry that CD39- Tim3- Slamf6+ PD-1+ cells yielded maximum enrichment for tumor specific PD-1+ Tcf1+ OT1 TILs in B16.OVA tumors. Moreover, this population showed higher re-expansion capacity upon an acute infection recall response compared to the CD39+ counterparts or bulk PD-1+ TILs. Hence, we report an enhanced sorting strategy (CD39- Tim3- Slamf6+ PD-1+) of Tpes. In conclusion, we show that optimization of CD8 TIL cell sorting strategy is a viable approach to improve recall capacity and in vivo persistence of transferred cells in the context of ACT.


Assuntos
Transferência Adotiva/métodos , Linfócitos T CD8-Positivos/imunologia , Separação Celular/métodos , Linfócitos do Interstício Tumoral/imunologia , Animais , Antígenos CD/análise , Apirase/análise , Linfócitos T CD8-Positivos/citologia , Linhagem Celular Tumoral , Feminino , Humanos , Linfócitos do Interstício Tumoral/citologia , Melanoma/imunologia , Melanoma/terapia , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Receptor de Morte Celular Programada 1/análise , Receptores CXCR5/análise
17.
Cancer Cell ; 36(6): 613-629.e7, 2019 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-31761658

RESUMO

Retroviral gene transfer of interleukin-12 (IL-12) into T cells markedly enhances antitumor efficacy upon adoptive transfer but has clinically shown unacceptable severe side effects. To overcome the toxicity, we engineered tumor-specific CD8+ T cells to transiently express IL-12. Engineered T cells injected intratumorally, but not intravenously, led to complete rejections not only of the injected lesion but also of distant concomitant tumors. Efficacy was further enhanced by co-injection with agonist anti-CD137 mAb or by transient co-expression of CD137 ligand. This treatment induced epitope spreading of the endogenous CD8+ T cell immune response in a manner dependent on cDC1 dendritic cells. Mouse and human tumor-infiltrating T lymphocyte cultures can be transiently IL-12 engineered to attain marked immunotherapeutic effects.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia Adotiva , Interleucina-12/genética , Linfócitos do Interstício Tumoral/imunologia , Transferência Adotiva/métodos , Animais , Anticorpos Monoclonais/farmacologia , Linhagem Celular Tumoral , Células Dendríticas/imunologia , Humanos , Imunoterapia Adotiva/métodos , Melanoma Experimental/tratamento farmacológico , Melanoma Experimental/imunologia , Camundongos , Linfócitos T Citotóxicos/imunologia
18.
Cancer Res ; 78(23): 6643-6654, 2018 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-30297531

RESUMO

: Multiple lines of evidence indicate a critical role of antigen cross-presentation by conventional BATF3-dependent type 1 classical dendritic cells (cDC1) in CD8-mediated antitumor immunity. Flt3L and XCL1, respectively, constitute a key growth/differentiation factor and a potent and specific chemoattractant for cDC1. To exploit their antitumor functions in local immunotherapy, we prepared Semliki Forest Virus (SFV)-based vectors encoding XCL1 and soluble Flt3L (sFlt3L). These vectors readily conferred transgene expression to the tumor cells in culture and when engrafted as subcutaneous mouse tumor models. In syngeneic mice, intratumoral injection of SFV-XCL1-sFlt3L (SFV-XF) delayed progression of MC38- and B16-derived tumors. Therapeutic activity was observed and exerted additive effects in combination with anti-PD-1, anti-CD137, or CTLA-4 immunostimulatory mAbs. Therapeutic effects were abolished by CD8ß T-cell depletion and were enhanced by CD4 T-cell depletion, but not by T regulatory cell predepletion with anti-CD25 mAb. Antitumor effects were also abolished in BATF3- and IFNAR-deficient mice. In B16-OVA tumors, SFV-XF increased the number of infiltrating CD8 T cells, including those recognizing OVA. Consistently, following the intratumoral SFV-XF treatment courses, we observed increased BATF3-dependent cDC1 among B16-OVA tumor-infiltrating leukocytes. Such an intratumoral increase was not seen in MC38-derived tumors, but both resident and migratory cDC1 were boosted in SFV-XF-treated MC38 tumor-draining lymph nodes. In conclusion, viral gene transfer of sFlt3L and XCL1 is feasible, safe, and biologically active in mice, exerting antitumor effects that can be potentiated by CD4 T-cell depletion. SIGNIFICANCE: These findings demonstrate that transgenic expression of sFLT3L and XCL1 in tumor cells mediates cross-priming of, and elicits potent antitumor activity from, CD8 T lymphocytes, particularly in combination with CD4 T-cell depletion.


Assuntos
Quimiocinas C/genética , Apresentação Cruzada/imunologia , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Vetores Genéticos/genética , Proteínas de Membrana/genética , Vírus da Floresta de Semliki/genética , Linfócitos T/imunologia , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Imunoterapia , Camundongos , Linfócitos T/metabolismo , Microambiente Tumoral/imunologia
19.
Front Immunol ; 9: 2076, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30258445

RESUMO

Tissue resident memory T cells (Trm) are a subset of memory T cells mainly described in inflammation and infection settings. Their location in peripheral tissues, such as lungs, gut, or skin, makes them the earliest T cell population to respond upon antigen recognition or under inflammatory conditions. The study of Trm cells in the field of cancer, and particularly in cancer immunotherapy, has recently gained considerable momentum. Different reports have shown that the vaccination route is critical to promote Trm generation in preclinical cancer models. Cancer vaccines administered directly at the mucosa, frequently result in enhanced Trm formation in mucosal cancers compared to vaccinations via intramuscular or subcutaneous routes. Moreover, the intratumoral presence of T cells expressing the integrin CD103 has been reported to strongly correlate with a favorable prognosis for cancer patients. In spite of recent progress, the full spectrum of Trm anti-tumoral functions still needs to be fully established, particularly in cancer patients, in different clinical contexts. In this mini-review we focus on the recent vaccination strategies aimed at generating Trm cells, as well as evidence supporting their association with patient survival in different cancer types. We believe that collectively, this information provides a strong rationale to target Trm for cancer immunotherapy.


Assuntos
Vacinas Anticâncer/imunologia , Memória Imunológica , Vigilância Imunológica , Neoplasias/imunologia , Neoplasias/terapia , Linfócitos T/imunologia , Vacinação , Animais , Antígenos CD/imunologia , Humanos , Cadeias alfa de Integrinas/imunologia , Neoplasias/patologia , Linfócitos T/patologia
20.
Cancer Immunol Res ; 6(7): 798-811, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29678874

RESUMO

T and NK lymphocytes express CD137 (4-1BB), a costimulatory receptor of the TNFR family whose function is exploitable for cancer immunotherapy. Mitochondria regulate the function and survival of T lymphocytes. Herein, we show that CD137 costimulation provided by agonist mAb and CD137L (4-1BBL) induced mitochondria enlargement that resulted in enhanced mitochondrial mass and transmembrane potential in human and mouse CD8+ T cells. Such mitochondrial changes increased T-cell respiratory capacities and were critically dependent on mitochondrial fusion protein OPA-1 expression. Mass and function of mitochondria in tumor-reactive CD8+ T cells from cancer-bearing mice were invigorated by agonist mAb to CD137, whereas mitochondrial baseline mass and function were depressed in CD137-deficient tumor reactive T cells. Tumor rejection induced by the synergistic combination of adoptive T-cell therapy and agonistic anti-CD137 was critically dependent on OPA-1 expression in transferred CD8+ T cells. Moreover, stimulation of CD137 with CD137 mAb in short-term cultures of human tumor-infiltrating lymphocytes led to mitochondria enlargement and increased transmembrane potential. Collectively, these data point to a critical link between mitochondrial morphology and function and enhanced antitumor effector activity upon CD137 costimulation of T cells. Cancer Immunol Res; 6(7); 798-811. ©2018 AACR.


Assuntos
Ligante 4-1BB/metabolismo , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Linfócitos T/metabolismo , Ligante 4-1BB/genética , Animais , Biomarcadores , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Inativação Gênica , Humanos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Melanoma Experimental , Potencial da Membrana Mitocondrial , Camundongos , Camundongos Knockout , Mitocôndrias/genética , Neoplasias/imunologia , Neoplasias/metabolismo , Neoplasias/patologia , RNA Interferente Pequeno/genética , Linfócitos T/imunologia , Microambiente Tumoral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...