Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 10(3): e25101, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38322945

RESUMO

In this study, convective heat transfer for nanofluid flow over multiple rotating cylinder in a confined space is analyzed under magnetic field while enclosure has one inlet and one outlet port. Three identical circular cylinder are used and the two walls of the cavity are considered to be elastic. The coupled fluid-structure interaction and magneto-convection problem is solved by finite element method. Impacts of rotational Reynolds number (Rew between -100 and 100), Hartmann number (Ha between 0 and 50), cylinder size (R between 0.001H and 0.11H) and Cauchy number (Ca between 10-8 and 10-3) on the flow and thermal performance features are explored. The flow field and recirculation inside the cavity are significantly affected by the activation of rotation and magnetic field. The vortices are suppressed by increasing the strength of magnetic field and thermal performance is improved. Thermal performance of 56.6% is achieved by activation of magnetic field at the highest strength with rotations of the circular cylinders. When rotations are active, heat transfer rate is reduced while up to 40% reduction is obtained without magnetic field. Cylinder size has the highest impact on the overall thermal performance improvement while up to 132% enhancements are achieved. The contribution of elastic walls on the thermal performance is slight while less than 5% improvements in the average heat transfer is obtained. An optimization study leads to 12.7% higher thermal performance improvements as compared to best case of parametric computational fluid dynamics simulation results while the optimum values of (Rew, Ha, R) is obtained as (-80.66, 50, 0.11H).

2.
Heliyon ; 9(5): e15696, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37180908

RESUMO

The study of radiation, Darcy-Forchheimer relation, and reduced gravity, effects on magnetohydrodynamic flow across a solid sphere immersed in porous material, is the focus of the current work. Coupled and nonlinear partial differential governing equations, are established to model the studied configuration. By using appropriate scaling variables, the resultant set of governing equations is converted to its dimensionless form. Based on these established equations, a numerical algorithm is written based on the finite element approach to solve the considered problem. A verification of the validity of the proposed model is done by comparing with already published results. Furthermore, to check the precision of solutions, a grid independence test has been accomplished. The unknown variables, such as fluid velocity and temperature, and their gradients are evaluated. This investigation's main objective is to demonstrate how the Darcy-Forchheimer law and reduced gravity due to density difference affect the natural convective heat transfer across a solid sphere immersed in a porous medium. Results show that the flow intensity decreases with the magnetic field parameter, local inertial coefficient, Prandtl number, and porosity parameter and becomes more important by increasing the reduced gravity and radiation parameters. In addition, the temperature increases with the inertial coefficient, porosity parameter, Prandtl number, radiation parameter, and magnetic field parameter and get declined with the reduced gravity parameter.

3.
Sci Rep ; 13(1): 8316, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37221203

RESUMO

Hybrid nanofluid are the modified class of nanofluids with extra high thermal performances and present different applications in automotive cooling, heat transfer devices, solar collectors, engine applications, fusion processes, machine cutting, chemical processes etc. This thermal research explores the heat transfer assessment due to hybrid nanofluid with of different shape features. The thermal inspections regarding the hybrid nanofluid model are justified with aluminium oxide and titanium nanoparticles. The base liquid properties are disclosed with ethylene glycol material. The novel impact of current model is the presentation of different shape features namely Platelets, blade and cylinder. Different thermal properties of utilized nanoparticles at various flow constraints are reported. The problem of hybrid nanofluid model is modified in view of slip mechanism, magnetic force and viscous dissipation. The heat transfer observations for decomposition of TiO2-Al2O3/C2H6O2 is assessed by using the convective boundary conditions. The shooting methodology is involved for finding the numerical observations of problem. Graphical impact of thermal parameters is observed for TiO2-Al2O3/C2H6O2 hybrid decomposition. The pronounced observations reveal that thermal rate enhanced for blade shaped titanium oxide-ethylene glycol decomposition. The wall shear force reduces for blade shaped titanium oxide nanoparticles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...