Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 38(10): 110482, 2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35263574

RESUMO

Infection and vaccination repeatedly expose individuals to antigens that are conserved between influenza virus subtypes. Nevertheless, antibodies recognizing variable influenza epitopes greatly outnumber antibodies reactive against conserved epitopes. Elucidating factors contributing to the paucity of broadly reactive influenza antibodies remains a major obstacle for developing a universal influenza vaccine. Here, we report that inducing broadly reactive influenza antibodies increases autoreactive antibodies in humans and mice and exacerbates disease in four distinct models of autoimmune disease. Importantly, transferring broadly reactive influenza antibodies augments disease in the presence of inflammation or autoimmune susceptibility. Further, broadly reactive influenza antibodies spontaneously arise in mice with defects in B cell tolerance. Together, these data suggest that self-tolerance mechanisms limit the prevalence of broadly reactive influenza antibodies, which can exacerbate disease in the context of additional risk factors.


Assuntos
Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Autoimunidade , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Humanos , Camundongos
2.
mBio ; 11(6)2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33144374

RESUMO

Enhancing the generation of broadly reactive antibodies against influenza A virus (IAV) is a pertinent goal toward developing a universal IAV vaccine. While antibodies that bind conserved IAV epitopes have been identified in humans, antibodies specific for the variable epitopes are much more prevalent than antibodies recognizing conserved epitopes. It is important to define the factors that limit the generation of broadly reactive IAV antibodies in order to develop an effective universal IAV vaccine. The predominant theory is that competition within germinal centers favors the synthesis of high-affinity antibodies specific for the variable region of the virus, and limits antibodies specific for conserved IAV epitopes. Here, we show that reducing germinal center formation and removing competition with high-affinity antibodies was not sufficient to increase broadly reactive IAV antibodies or enhance protection against distinct IAV subtypes. These data disprove the prevailing hypothesis that broadly reactive IAV antibodies are rare due to competition within germinal centers, and reveal the critical need to further investigate factors that limit broadly reactive IAV antibodies. Additionally, our data show that IAV-specific IgM antibodies persist in mice in the absence of germinal centers, highlighting the protective capacity of germinal center-independent IgM antibodies, which are not typically considered when testing correlates of protection, and offer an alternate target for delivering a universal IAV vaccine.IMPORTANCE It is estimated that 250,000 to 650,000 individuals worldwide die each year from seasonal influenza A virus (IAV) infections. Current vaccines provide little protection against newly emerging strains. Thus, considerable effort is focused on enhancing the generation of broadly reactive IAV antibodies in order to develop a universal IAV vaccine. However, broadly reactive IAV antibodies are rare and the factors that limit their generation are not completely understood. Our data disprove the prevailing hypothesis that broadly reactive IAV antibodies are uncommon due to competition in the germinal centers with antibodies specific for the variable, hemagglutinin (HA) head. Understanding the factors that constrain development of antibodies specific for conserved regions of IAV is imperative for developing an effective universal IAV vaccine, which could potentially circumvent a catastrophic pandemic. These findings are significant as they highlight the importance of investigating other mechanisms that contribute to the paucity of broadly reactive IAV antibodies.


Assuntos
Anticorpos Antivirais/imunologia , Afinidade de Anticorpos/imunologia , Centro Germinativo/imunologia , Vírus da Influenza A/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Animais , Anticorpos Neutralizantes , Especificidade de Anticorpos/imunologia , Reações Cruzadas/imunologia , Modelos Animais de Doenças , Relação Dose-Resposta Imunológica , Feminino , Humanos , Imunização Secundária , Imunoglobulina G/imunologia , Imunoglobulina M/imunologia , Imuno-Histoquímica , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...