Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 67
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Open Biol ; 11(2): 210006, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33529554

RESUMO

Epithelial cells possess the ability to change their shape in response to mechanical stress by remodelling their junctions and their cytoskeleton. This property lies at the heart of tissue morphogenesis in embryos. A key feature of embryonic cell shape changes is that they result from repeated mechanical inputs that make them partially irreversible at each step. Past work on cell rheology has rarely addressed how changes can become irreversible in a complex tissue. Here, we review new and exciting findings dissecting some of the physical principles and molecular mechanisms accounting for irreversible cell shape changes. We discuss concepts of mechanical ratchets and tension thresholds required to induce permanent cell deformations akin to mechanical plasticity. Work in different systems has highlighted the importance of actin remodelling and of E-cadherin endocytosis. We also list some novel experimental approaches to fine-tune mechanical tension, using optogenetics, magnetic beads or stretching of suspended epithelial tissues. Finally, we discuss some mathematical models that have been used to describe the quantitative aspects of accounting for mechanical cell plasticity and offer perspectives on this rapidly evolving field.


Assuntos
Forma Celular , Estresse Mecânico , Citoesqueleto de Actina/metabolismo , Animais , Caderinas/metabolismo , Endocitose , Humanos , Modelos Teóricos
2.
Dev Cell ; 56(2): 161-163, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33497622

RESUMO

Most tissues include several cell types, which generally develop or get repaired synchronously so as to remain properly organized. In a recent Cell Stem Cell article, Ning et al. (2020) reveals how the tensile state of the skin suprabasal cells non-autonomously regulate stem cell behavior in the basal layer.


Assuntos
Pele , Células-Tronco , Diferenciação Celular , Proliferação de Células , Epiderme
3.
Mol Biol Cell ; 31(15): 1623-1636, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32491957

RESUMO

Actomyosin cortical contractility drives many cell shape changes including cytokinetic furrowing. While positive regulation of contractility is well characterized, counterbalancing negative regulation and mechanical brakes are less well understood. The small GTPase RhoA is a central regulator, activating cortical actomyosin contractility during cytokinesis and other events. Here we report how two novel cytokinetic ring components, GCK-1 (germinal center kinase-1) and CCM-3 (cerebral cavernous malformations-3), participate in a negative feedback loop among RhoA and its cytoskeletal effectors to inhibit contractility. GCK-1 and CCM-3 are recruited by active RhoA and anillin to the cytokinetic ring, where they in turn limit RhoA activity and contractility. This is evidenced by increased RhoA activity, anillin and nonmuscle myosin II in the cytokinetic ring, and faster cytokinetic furrowing, following depletion of GCK-1 or CCM-3. GCK-1 or CCM-3 depletion also reduced RGA-3 levels in pulses and increased baseline RhoA activity and pulsed contractility during zygote polarization. Together, our results suggest that GCK-1 and CCM-3 regulate cortical actomyosin contractility via negative feedback. These findings have implications for the molecular and cellular mechanisms of cerebral cavernous malformation pathologies.


Assuntos
Caenorhabditis elegans/citologia , Citocinese , Retroalimentação Fisiológica , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Polaridade Celular , Estabilidade Proteica , Proteína rhoA de Ligação ao GTP/metabolismo
4.
Development ; 146(24)2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31784459

RESUMO

Mechanical forces can elicit a mechanotransduction response through junction-associated proteins. In contrast to the wealth of knowledge available for focal adhesions and adherens junctions, much less is known about mechanotransduction at hemidesmosomes. Here, we focus on the C. elegans plectin homolog VAB-10A, the only evolutionary conserved hemidesmosome component. In C. elegans, muscle contractions induce a mechanotransduction pathway in the epidermis through hemidesmosomes. We used CRISPR to precisely remove spectrin repeats (SRs) or a partially hidden Src homology 3 (SH3) domain within the VAB-10 plakin domain. Deleting the SH3 or SR8 domains in combination with mutations affecting mechanotransduction, or just the part of SR5 shielding the SH3 domain, induced embryonic elongation arrest because hemidesmosomes collapse. Notably, recruitment of GIT-1, the first mechanotransduction player, requires the SR5 domain and the hemidesmosome transmembrane receptor LET-805. Furthermore, molecular dynamics simulations confirmed that forces acting on VAB-10 could make the central SH3 domain, otherwise in contact with SR4, available for interaction. Collectively, our data strongly indicate that the plakin domain plays a central role in mechanotransduction and raise the possibility that VAB-10/plectin might act as a mechanosensor.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Mecanotransdução Celular/genética , Morfogênese/genética , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Embrião não Mamífero , Epiderme/embriologia , Epiderme/metabolismo , Simulação de Dinâmica Molecular , Domínios Proteicos/genética , Domínios Proteicos/fisiologia , Imagem com Lapso de Tempo
5.
Nature ; 574(7778): E17, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31582857

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Nature ; 573(7775): E4, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31488913

RESUMO

An Amendment to this paper has been published and can be accessed via a link at the top of the paper.

7.
Nature ; 573(7773): 266-270, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31462781

RESUMO

Body-axis elongation constitutes a key step in animal development, laying out the final form of the entire animal. It relies on the interplay between intrinsic forces generated by molecular motors1-3, extrinsic forces exerted by adjacent cells4-7 and mechanical resistance forces due to tissue elasticity or friction8-10. Understanding how mechanical forces influence morphogenesis at the cellular and molecular level remains a challenge1. Recent work has outlined how small incremental steps power cell-autonomous epithelial shape changes1-3, which suggests the existence of specific mechanisms that stabilize cell shapes and counteract cell elasticity. Beyond the twofold stage, embryonic elongation in Caenorhabditis elegans is dependent on both muscle activity7 and the epidermis; the tension generated by muscle activity triggers a mechanotransduction pathway in the epidermis that promotes axis elongation7. Here we identify a network that stabilizes cell shapes in C. elegans embryos at a stage that involves non-autonomous mechanical interactions between epithelia and contractile cells. We searched for factors genetically or molecularly interacting with the p21-activating kinase homologue PAK-1 and acting in this pathway, thereby identifying the α-spectrin SPC-1. Combined absence of PAK-1 and SPC-1 induced complete axis retraction, owing to defective epidermal actin stress fibre. Modelling predicts that a mechanical viscoplastic deformation process can account for embryo shape stabilization. Molecular analysis suggests that the cellular basis for viscoplasticity originates from progressive shortening of epidermal microfilaments that are induced by muscle contractions relayed by actin-severing proteins and from formin homology 2 domain-containing protein 1 (FHOD-1) formin bundling. Our work thus identifies an essential molecular lock acting in a developmental ratchet-like process.


Assuntos
Actinas/metabolismo , Padronização Corporal/fisiologia , Caenorhabditis elegans/embriologia , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/citologia , Embrião não Mamífero , Células Epidérmicas/citologia
8.
J Cell Sci ; 131(11)2018 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-29748380

RESUMO

Hemidesmosomes are epithelial-specific attachment structures that maintain tissue integrity and resist tension. Despite their importance, how hemidesmosomes are regulated at the post-transcriptional level is poorly understood. Caenorhabditiselegans hemidesmosomes (CeHDs) have a similar structure and composition to their mammalian counterparts, making C. elegans an ideal model for studying hemidesmosomes. Here, we focus on the transcription regulator CCAR-1, identified in a previous genetic screen searching for enhancers of mutations in the conserved hemidesmosome component VAB-10A (known as plectin in mammals). Loss of CCAR-1 function in a vab-10(e698) background results in CeHD disruption and muscle detachment from the epidermis. CCAR-1 regulates CeHD biogenesis, not by controlling the transcription of CeHD-related genes, but by affecting the alternative splicing of unc-52 (known as perlecan or HSPG2 in mammals), the predicted basement extracellular matrix (ECM) ligand of CeHDs. CCAR-1 physically interacts with HRP-2 (hnRNPR in mammals), a splicing factor known to mediate unc-52 alternative splicing to control the proportions of different UNC-52 isoforms and stabilize CeHDs. Our discovery underlines the importance of post-transcriptional regulation in hemidesmosome reorganization. It also uncovers previously unappreciated roles of CCAR-1 in alternative splicing and hemidesmosome biogenesis, shedding new light on the mechanisms through which mammalian CCAR1 functions in tumorigenesis.


Assuntos
Processamento Alternativo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Hemidesmossomos/metabolismo , Proteínas de Membrana/metabolismo , Proteoglicanas/metabolismo , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Epiderme/embriologia , Epiderme/metabolismo , Hemidesmossomos/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/genética , Ribonucleoproteínas Nucleares Heterogêneas Grupo A-B/metabolismo , Proteínas de Membrana/genética , Músculos/embriologia , Músculos/metabolismo , Ligação Proteica , Proteoglicanas/genética
10.
PLoS One ; 13(2): e0193279, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29466456

RESUMO

Adherens junctions (AJs) are key structures regulating tissue integrity and maintaining adhesion between cells. During morphogenesis, junctional proteins cooperate closely with the actomyosin network to drive cell movement and shape changes. How the junctions integrate the mechanical forces in space and in time during an in vivo morphogenetic event is still largely unknown, due to a lack of quantitative data. To address this issue, we inserted a functional Fluorescence Resonance Energy Transfer (FRET)-based force biosensor within HMP-1/α-catenin of Caenorhabditis elegans. We find that the tension exerted on HMP-1 has a cell-specific distribution, is actomyosin-dependent, but is regulated differently from the tension on the actin cortex during embryonic elongation. By using time-lapse analysis of mutants and tissue-specific rescue experiments, we confirm the role of VAB-9/Claudin as an actin bundle anchor. Nevertheless, the tension exerted on HMP-1 did not increase in the absence of VAB-9/Claudin, suggesting that HMP-1 activity is not upregulated to compensate for loss of VAB-9. Our data indicate that HMP-1 does not modulate HMR-1/E-cadherin turnover, is required to recruit junctional actin but not stress fiber-like actin bundles. Altogether, our data suggest that HMP-1/α-catenin acts to promote the mechanical integrity of adherens junctions.


Assuntos
Junções Aderentes/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Morfogênese/fisiologia , alfa Catenina/metabolismo , Junções Aderentes/genética , Animais , Caderinas/genética , Caderinas/metabolismo , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Transferência Ressonante de Energia de Fluorescência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , alfa Catenina/genética
12.
Phys Rev Lett ; 121(26): 268102, 2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30636158

RESUMO

The role of the actomyosin network is investigated in the elongation of C. elegans during embryonic morphogenesis. We present a model of active elongating matter that combines prestress and passive stress in nonlinear elasticity. Using this model we revisit recently published data from laser ablation experiments to account for why cells under contraction can lead to an opening fracture. By taking into account the specific embryo geometry, we obtain quantitative predictions for the contractile forces exerted by the molecular motors myosin II for an elongation up to 70% of the initial length. This study demonstrates the importance of active processes in embryonic morphogenesis and the interplay between geometry and nonlinear mechanics during morphological events. In particular, it outlines the role of each connected layer of the epidermis compressed by an apical extracellular matrix that distributes the stresses during elongation.


Assuntos
Citoesqueleto de Actina/metabolismo , Actomiosina/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário , Morfogênese , Estresse Fisiológico , Animais , Caenorhabditis elegans/fisiologia
13.
Small GTPases ; 9(6): 445-451, 2018 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-27875100

RESUMO

Extracellular vesicles are novel mediators of cell-cell communication. They are present in all species and involved in physiological and pathological processes. One class of extracellular vesicles, the exosomes, originate from an endosomal compartment, the MultiVesicular Body (MVB), and are released from the cell upon fusion of the MVB with the plasma membrane. Although different molecular mechanisms have been associated with MVB biogenesis and exosome secretion, how they coordinate remains poorly documented. We recently found that the small GTPase Ral contributes to exosome release in nematodes and mammalian tumor cells. More specifically, we found that C. elegans RAL-1 is required for the biogenesis of MVBs, and later for MVB fusion with the plasma membrane. Here, we discuss our results in relationship with other factors involved in extracellular vesicle production such as the ESCRT complex and Phospholipase 1D. We propose models to explain Ral function in exosome secretion, its conservation in animals, and its possible role in tumor progression.


Assuntos
Exossomos/metabolismo , Corpos Multivesiculares/metabolismo , Proteínas ral de Ligação ao GTP/metabolismo , Animais , Caenorhabditis elegans/citologia , Caenorhabditis elegans/metabolismo , Membrana Celular/metabolismo
14.
Mol Biol Cell ; 29(4): 435-451, 2018 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-29237817

RESUMO

Hemidesmosomes (HDs) are epithelial-specific cell-matrix adhesions that stably anchor the intracellular keratin network to the extracellular matrix. Although their main role is to protect the epithelial sheet from external mechanical strain, how HDs respond to mechanical stress remains poorly understood. Here we identify a pathway essential for HD remodeling and outline its role with respect to α6ß4 integrin recycling. We find that α6ß4 integrin chains localize to the plasma membrane, caveolae, and ADP-ribosylation factor-6+ (Arf6+) endocytic compartments. Based on fluorescence recovery after photobleaching and endocytosis assays, integrin recycling between both sites requires the small GTPase Arf6 but neither caveolin1 (Cav1) nor Cavin1. Strikingly, when keratinocytes are stretched or hypo-osmotically shocked, α6ß4 integrin accumulates at cell edges, whereas Cav1 disappears from it. This process, which is isotropic relative to the orientation of stretch, depends on Arf6, Cav1, and Cavin1. We propose that mechanically induced HD growth involves the isotropic flattening of caveolae (known for their mechanical buffering role) associated with integrin diffusion and turnover.


Assuntos
Fatores de Ribosilação do ADP/metabolismo , Caveolina 1/metabolismo , Hemidesmossomos/metabolismo , Integrina beta4/metabolismo , Queratinócitos/metabolismo , Fator 6 de Ribosilação do ADP , Linhagem Celular , Membrana Celular/metabolismo , Hemidesmossomos/ultraestrutura , Humanos , Microscopia Eletrônica de Transmissão , Microscopia Imunoeletrônica
15.
Development ; 144(23): 4336-4349, 2017 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-28526752

RESUMO

Epithelia are bound by both basal and apical extracellular matrices (ECM). Although the composition and function of the former have been intensively investigated, less is known about the latter. The embryonic sheath, the ECM apical to the Caenorhabditis elegans embryonic epidermis, has been suggested to promote elongation of the embryo. In an RNAi screen for the components of the sheath, we identified the zona pellucida domain proteins NOAH-1 and NOAH-2. We found that these proteins act in the same pathway, and in parallel to three other putative sheath proteins, the leucine-rich repeat proteins SYM-1, LET-4 and FBN-1/Fibrillin, to ensure embryonic integrity and promote elongation. Laser nano-ablation experiments to map the stress field show that NOAH-1 and NOAH-2, together with PAK-1/p21-activated kinase, maintain and relay the actomyosin-dependent stress generated within the lateral epidermis before muscles become active. Subsequently, loss-of-function experiments show that apical ECM proteins are essential for muscle anchoring and for relaying the mechanical input from muscle contractions, which are essential for elongation. Hence, the apical ECM contributes to morphogenesis by maintaining embryonic integrity and relaying mechanical stress.


Assuntos
Caenorhabditis elegans/embriologia , Matriz Extracelular/fisiologia , Morfogênese/fisiologia , Actomiosina/fisiologia , Animais , Fenômenos Biomecânicos , Padronização Corporal/genética , Padronização Corporal/fisiologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/fisiologia , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/fisiologia , Proteínas da Matriz Extracelular/antagonistas & inibidores , Proteínas da Matriz Extracelular/genética , Proteínas da Matriz Extracelular/fisiologia , Genes de Helmintos , Proteínas de Repetições Ricas em Leucina , Modelos Biológicos , Morfogênese/genética , Proteínas/antagonistas & inibidores , Proteínas/genética , Proteínas/fisiologia , Interferência de RNA , Estresse Mecânico , Glicoproteínas da Zona Pelúcida/antagonistas & inibidores , Glicoproteínas da Zona Pelúcida/genética , Glicoproteínas da Zona Pelúcida/fisiologia
16.
Elife ; 62017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28181905

RESUMO

The morphogenesis of tissues, like the deformation of an object, results from the interplay between their material properties and the mechanical forces exerted on them. The importance of mechanical forces in influencing cell behaviour is widely recognized, whereas the importance of tissue material properties, in particular stiffness, has received much less attention. Using Caenorhabditis elegans as a model, we examine how both aspects contribute to embryonic elongation. Measuring the opening shape of the epidermal actin cortex after laser nano-ablation, we assess the spatiotemporal changes of actomyosin-dependent force and stiffness along the antero-posterior and dorso-ventral axis. Experimental data and analytical modelling show that myosin-II-dependent force anisotropy within the lateral epidermis, and stiffness anisotropy within the fiber-reinforced dorso-ventral epidermis are critical in driving embryonic elongation. Together, our results establish a quantitative link between cortical tension, material properties and morphogenesis of an entire embryo.


Assuntos
Anisotropia , Caenorhabditis elegans/anatomia & histologia , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário , Morfogênese , Animais
17.
Gut ; 66(10): 1748-1760, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27371534

RESUMO

OBJECTIVE: Epidemiological and clinical data indicate that patients suffering from IBD with long-standing colitis display a higher risk to develop colorectal high-grade dysplasia. Whereas carcinoma invasion and metastasis rely on basement membrane (BM) disruption, experimental evidence is lacking regarding the potential contribution of epithelial cell/BM anchorage on inflammation onset and subsequent neoplastic transformation of inflammatory lesions. Herein, we analyse the role of the α6ß4 integrin receptor found in hemidesmosomes that attach intestinal epithelial cells (IECs) to the laminin-containing BM. DESIGN: We developed new mouse models inducing IEC-specific ablation of α6 integrin either during development (α6ΔIEC) or in adults (α6ΔIEC-TAM). RESULTS: Strikingly, all α6ΔIEC mutant mice spontaneously developed long-standing colitis, which degenerated overtime into infiltrating adenocarcinoma. The sequence of events leading to disease onset entails hemidesmosome disruption, BM detachment, IL-18 overproduction by IECs, hyperplasia and enhanced intestinal permeability. Likewise, IEC-specific ablation of α6 integrin induced in adult mice (α6ΔIEC-TAM) resulted in fully penetrant colitis and tumour progression. Whereas broad-spectrum antibiotic treatment lowered tissue pathology and IL-1ß secretion from infiltrating myeloid cells, it failed to reduce Th1 and Th17 response. Interestingly, while the initial intestinal inflammation occurred independently of the adaptive immune system, tumourigenesis required B and T lymphocyte activation. CONCLUSIONS: We provide for the first time evidence that loss of IECs/BM interactions triggered by hemidesmosome disruption initiates the development of inflammatory lesions that progress into high-grade dysplasia and carcinoma. Colorectal neoplasia in our mouse models resemble that seen in patients with IBD, making them highly attractive for discovering more efficient therapies.


Assuntos
Adenocarcinoma/fisiopatologia , Colite/fisiopatologia , Neoplasias Colorretais/fisiopatologia , Citocinas/metabolismo , Hemidesmossomos/fisiologia , Integrina alfa6/genética , Integrina alfa6beta4/metabolismo , Mucosa Intestinal/metabolismo , Imunidade Adaptativa , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Animais , Linfócitos B , Membrana Basal/fisiopatologia , Caspase 1/metabolismo , Colite/genética , Colite/metabolismo , Colite/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Citocinas/genética , Células Epiteliais/metabolismo , Hemidesmossomos/genética , Homeostase/genética , Mucosa Intestinal/patologia , Mucosa Intestinal/fisiopatologia , Queratina-18/metabolismo , Queratina-8/metabolismo , Ativação Linfocitária , Camundongos , Muco/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Permeabilidade , Índice de Gravidade de Doença , Transdução de Sinais , Linfócitos T
18.
Curr Top Dev Biol ; 116: 597-616, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26970644

RESUMO

Morphogenesis is a four-dimensional process which involves the crucial interplay between signaling, mechanical forces, and spatial changes. Caenorhabditis elegans presents a simple yet versatile model to study morphogenesis. Here, we review recent progress on cellular and molecular drivers of morphological changes during C. elegans epiboly and embryonic elongation: actin dynamics and actomyosin contractility, migration guidance cues and junction remodeling. In addition, we discuss how mechanical forces contribute to the process.


Assuntos
Caenorhabditis elegans/embriologia , Embrião não Mamífero/citologia , Morfogênese/fisiologia , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Embrião não Mamífero/metabolismo , Desenvolvimento Embrionário , Transdução de Sinais
19.
Methods Enzymol ; 569: 407-30, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26778569

RESUMO

Intermediate filaments (IFs) are involved in multiple cellular processes that are essential for the maintenance of cell and tissue integrity. To achieve this crucial function, IFs have to be organized as long and resistant filaments across the cells and to be tightly anchored at the cell periphery. This anchoring takes place at the level desmosomes and hemidesmosomes through proteins belonging to the spectraplakin family. Here, we focus on the sole nematode Caenorhabditis elegans spectraplakin locus vab-10 that is essential to connect the epidermis to the cuticle apically and to the muscles basally. After briefly reviewing the structure of the gene, we first present the genetic tools available to study this gene as well as the reagents to examine the distribution of its translation products. We discuss the functional assays that enable examining their function. Finally, we detail a genetic method to identify spectraplakin functional partners through RNAi screens, and a biochemical method to examine the phosphorylation status of IFs.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Animais , Sequência de Bases , Caenorhabditis elegans/citologia , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/fisiologia , Éxons , Mutação , Estrutura Terciária de Proteína
20.
Genesis ; 54(4): 229-42, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26789944

RESUMO

The microtubule cytoskeleton has a dual contribution to cell organization. First, microtubules help displace chromosomes and provide tracks for organelle transport. Second, microtubule rigidity confers specific mechanical properties to cells, which are crucial in cilia or mechanosensory structures. Here we review the recently uncovered organization and functions of noncentrosomal microtubules in C. elegans epithelia, focusing on how they contribute to nuclear positioning and protein transport. In addition, we describe recent data illustrating how the microtubule and actin cytoskeletons interact to achieve those functions.


Assuntos
Caenorhabditis elegans/citologia , Epitélio/metabolismo , Microtúbulos/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Transporte Proteico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...