Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Magn Reson Med ; 89(6): 2281-2294, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36688262

RESUMO

PURPOSE: This work aims to explore the effect of Blood Brain Barrier (BBB) opening using ultrasound combined with microbubbles injection on cerebral blood flow in rats. METHODS: Two groups of n = 5 rats were included in this study. The first group was used to investigate the impact of BBB opening on the Arterial Spin Labeling (ASL) signal, in particular on the arterial transit time (ATT). The second group was used to analyze the spatiotemporal evolution of the change in cerebral blood flow (CBF) over time following BBB opening and validate these results using DSC-MRI. RESULTS: Using pCASL, a decrease in CBF of up to 29 . 6 ± 15 . 1 % $$ 29.6\pm 15.1\% $$ was observed in the target hemisphere, associated with an increase in arterial transit time. The latter was estimated to be 533 ± 121ms $$ 533\pm 12\mathrm{1ms} $$ in the BBB opening impacted regions against 409 ± 93ms $$ 409\pm 93\mathrm{ms} $$ in the contralateral hemisphere. The spatio-temporal analysis of CBF maps indicated a nonlocal hypoperfusion. DSC-MRI measurements were consistent with the obtained results. CONCLUSION: This study provided strong evidence that BBB opening using microbubble intravenous injection induces a transient hypoperfusion. A spatiotemporal analysis of the hypoperfusion changes allows to establish some points of similarity with the cortical spreading depression phenomenon.


Assuntos
Barreira Hematoencefálica , Imageamento por Ressonância Magnética , Ratos , Animais , Barreira Hematoencefálica/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Artérias , Isquemia , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
2.
Front Cell Neurosci ; 16: 871532, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928573

RESUMO

Objective: To date, no safe and effective pharmacological treatment has been clinically validated for improving post-stroke neurogenesis. Growth factors are good candidates but low safety has limited their application in the clinic. An additional restraint is the delivery route. Intranasal delivery presents many advantages. Materials and Methods: A brain lesion was induced in twenty-four rats. Nerve growth factor (NGF) 5 µg/kg/day or vehicle was given intranasally from day 10 post-lesion for two periods of five weeks, separated by a two-week wash out period with no treatment. Lesion volume and atrophy were identified by magnetic resonance imaging (MRI). Anxiety and sensorimotor recovery were measured by behavior tests. Neurogenesis, angiogenesis and inflammation were evaluated by histology at 12 weeks. Results: Remarkable neurogenesis occurred and was visible at the second and third months after the insult. Tissue reconstruction was clearly detected by T2 weighted MRI at 8 and 12 weeks post-lesion and confirmed by histology. In the new tissue (8.1% of the lesion in the NGF group vs. 2.4%, in the control group at 12 weeks), NGF significantly increased the percentage of mature neurons (19% vs. 7%). Angiogenesis and inflammation were not different in the two groups. Sensorimotor recovery was neither improved nor hampered by NGF during the first period of treatment, but NGF treatment limited motor recovery in the second period. Interpretation: The first five-week period of treatment was very well tolerated. This study is the first presenting the effects of a long treatment with NGF and has shown an important tissue regeneration rate at 8 and 12 weeks post-injury. NGF may have increased neuronal differentiation and survival and favored neurogenesis and neuron survival through subventricular zone (SVZ) neurogenesis or reprogramming of reactive astrocytes. For the first time, we evidenced a MRI biomarker of neurogenesis and tissue reconstruction with T2 and diffusion weighted imaging.

3.
Epilepsia ; 62(1): 163-175, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33258489

RESUMO

OBJECTIVE: Following surgery, focal seizures relapse in 20% to 50% of cases due to the difficulty of delimiting the epileptogenic zone (EZ) by current imaging or electrophysiological techniques. Here, we evaluate an unbiased metabolomics approach based on ex vivo and in vivo nuclear magnetic resonance spectroscopy (MRS) methods to discriminate the EZ in a mouse model of mesiotemporal lobe epilepsy (MTLE). METHODS: Four weeks after unilateral injection of kainic acid (KA) into the dorsal hippocampus of mice (KA-MTLE model), we analyzed hippocampal and cortical samples with high-resolution magic angle spinning (HRMAS) magnetic resonance spectroscopy (MRS). Using advanced multivariate statistics, we identified the metabolites that best discriminate the injected dorsal hippocampus (EZ) and developed an in vivo MEGAPRESS MRS method to focus on the detection of these metabolites in the same mouse model. RESULTS: Multivariate analysis of HRMAS data provided evidence that γ-aminobutyric acid (GABA) is largely increased in the EZ of KA-MTLE mice and is the metabolite that best discriminates the EZ when compared to sham and, more importantly, when compared to adjacent brain regions. These results were confirmed by capillary electrophoresis analysis and were not reversed by a chronic exposition to an antiepileptic drug (carbamazepine). Then, using in vivo noninvasive GABA-edited MRS, we confirmed that a high GABA increase is specific to the injected hippocampus of KA-MTLE mice. SIGNIFICANCE: Our strategy using ex vivo MRS-based untargeted metabolomics to select the most discriminant metabolite(s), followed by in vivo MRS-based targeted metabolomics, is an unbiased approach to accurately define the EZ in a mouse model of focal epilepsy. Results suggest that GABA is a specific biomarker of the EZ in MTLE.


Assuntos
Epilepsia do Lobo Temporal/metabolismo , Hipocampo/metabolismo , Metabolômica , Ácido gama-Aminobutírico/metabolismo , Animais , Anticonvulsivantes/farmacologia , Carbamazepina/farmacologia , Modelos Animais de Doenças , Eletroforese Capilar , Epilepsia do Lobo Temporal/induzido quimicamente , Agonistas de Aminoácidos Excitatórios/toxicidade , Hipocampo/diagnóstico por imagem , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Ácido Caínico/toxicidade , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética/métodos , Masculino , Camundongos , Análise Multivariada , Espectroscopia de Prótons por Ressonância Magnética/métodos , Esclerose , Ácido gama-Aminobutírico/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...