Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomaterials (Basel) ; 13(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37999319

RESUMO

The controlled supply of bioactive molecules is a subject of debate in animal nutrition. The release of bioactive molecules in the target organ, in this case the intestine, results in improved feed, as well as having a lower environmental impact. However, the degradation of bioactive molecules' in transit in the gastrointestinal passage is still an unresolved issue. This paper discusses the feasibility of a simple and cost-effective procedure to bypass the degradation problem. A solid/liquid adsorption procedure was applied, and the operating parameters (pH, reaction time, and LY initial concentration) were studied. Lysozyme is used in this work as a representative bioactive molecule, while Adsorbo®, a commercial mixture of clay minerals and zeolites which meets current feed regulations, is used as the carrier. A maximum LY loading of 32 mgLY/gAD (LY(32)-AD) was obtained, with fixing pH in the range 7.5-8, initial LY content at 37.5 mgLY/gAD, and reaction time at 30 min. A full characterisation of the hybrid organoclay highlighted that LY molecules were homogeneously spread on the carrier's surface, where the LY-carrier interaction was mainly due to charge interaction. Preliminary release tests performed on the LY(32)-AD synthesised sample showed a higher releasing capacity, raising the pH from 3 to 7. In addition, a preliminary Trolox equivalent antioxidant capacity (TEAC) assay showed an antioxidant capacity for the LY of 1.47 ± 0.18 µmol TroloxEq/g with an inhibition percentage of 33.20 ± 3.94%.

2.
Mar Pollut Bull ; 197: 115775, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37979531

RESUMO

Inland and offshore sediments from Southern Italy were studied in order to evaluate the occurrence and nature of microplastics (MPs). Inland sediments were collected in the Bradano and Basento rivers (Apulo-Lucanian region, Southern Italy), while offshore sediments were collected on the continental shelf near Bari (Adriatic Sea) and Metaponto (Ionian Sea). MPs were detected and characterized using optical microscopy, micro-Fourier-Transform Infrared spectroscopy (µ-FTIR) and micro-Raman analyses. The number of MPs present varied between 144 and 1246 kg-1 of dry sediment (468.8 ± 410,7 MPs kg-1) with a predominance of black fibers; no correlation emerged between MPs and sediment grain size. In river sediments, the occurrence of MPs is associated with local pollution, whereas the offshore occurrence of MPs depends on seasonal river flow and submarine canyons. Compositional analyses suggest that the main source of MPs in the studied sediments is sewage discharge from residential areas.


Assuntos
Microplásticos , Poluentes Químicos da Água , Microplásticos/química , Plásticos , Poluentes Químicos da Água/análise , Sedimentos Geológicos/química , Monitoramento Ambiental/métodos
3.
Waste Manag ; 120: 642-649, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208292

RESUMO

The present study describes the first example of utilization of a natural clay mineral as catalyst in a process addressed to chemical valorization of poly-[bisphenol A carbonate] (PC; (1)) wastes. A natural clinochlore was investigated for the first time as the catalyst of the hydrolysis reaction of 1, a potential route to chemical recycling of wastes of this polymeric material. At 473 K, in tetrahydrofuran (THF) as the solvent, the mineral promoted effectively the depolymerization (up to 99%, after 6 h) of 1 by H2O and the selective (~99%) regeneration of the monomer bisphenol A (BPA, (2)). Temperature, catalyst loading, reaction time, H2O/PC weight ratio affected markedly the productivity of the process. The role of the catalyst was also focused: the experimental data showed that the exposed brucite-like sheets of clinochlore are involved in the hydrolysis reaction and take active part in promoting the depolymerization process.


Assuntos
Plásticos , Reciclagem , Compostos Benzidrílicos , Carbonatos , Cloretos , Hidrólise , Fenóis
4.
Sci Rep ; 7: 40663, 2017 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28098185

RESUMO

This study presents a cross-correlated surface and near surface investigation of two phlogopite polytypes from Kasenyi kamafugitic rocks (SW Uganda) by means of advanced Atomic Force Microscopy (AFM), confocal microscopy and Raman micro-spectroscopy. AFM revealed comparable nanomorphology and electrostatic surface potential for the two mica polytypes. A widespread presence of nano-protrusions located on the mica flake surface was also observed, with an aspect ratio (maximum height/maximum width) from 0.01 to 0.09. Confocal microscopy showed these features to range from few nm to several µm in dimension, and shapes from perfectly circular to ellipsoidic and strongly elongated. Raman spectra collected across the bubbles showed an intense and convolute absorption in the range 3000-2800 cm-1, associated with weaker bands at 1655, 1438 and 1297 cm-1, indicating the presence of fluid inclusions consisting of aliphatic hydrocarbons, alkanes and cycloalkanes, with minor amounts of oxygenated compounds, such as carboxylic acids. High-resolution Raman images provided evidence that these hydrocarbons are confined within the bubbles. This work represents the first direct evidence that phlogopite, a common rock-forming mineral, may be a possible reservoir for hydrocarbons.

5.
Waste Manag ; 46: 546-56, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26403388

RESUMO

Two mineral clays of the montmorillonite group were tested as sorbents for the removal of Rare Earths (REs) from liquid solutions. Lanthanum and neodymium model solutions were used to perform uptake tests in order to: (a) verify the clays sorption capability, (b) investigate the sorption mechanisms and (c) optimize the experimental parameters, such as contact time and pH. The desorption was also studied, in order to evaluate the feasibility of REs recovery from waters. The adsorption-desorption procedure with the optimized parameters was also tested on a leaching solution obtained by dissolution of a dismantled NdFeB magnet of a hard-disk. The clays were fully characterized after REs adsorption and desorption by means of X-ray powder diffraction (XRPD) and X-ray photoelectron spectroscopy (XPS); the liquid phase was characterized via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES) analyses. The experimental results show that both clays are able to capture and release La and Nd ions, with an ion exchange mechanism. The best total efficiency (capture ≈ 50%, release ≈ 70%) is obtained when the uptake and release processes are performed at pH=5 and pH=1 respectively; in real leached scrap solutions, the uptake is around 40% but release efficiency is strongly decreased passing from a mono-ion system to a real system (from 80% to 5%). Furthermore, a strong matrix effect is found, with the matrix largely affecting both the uptake and the release of neodymium.


Assuntos
Bentonita/química , Metais Terras Raras/química , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/análise , Adsorção , Silicatos de Alumínio/química , Argila , Íons/química , Espectroscopia Fotoeletrônica , Difração de Pó , Espectrofotometria Atômica , Difração de Raios X
6.
Acta Crystallogr C ; 69(Pt 5): 480-2, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23629895

RESUMO

The title complex, [Ir2(C18H13FNO2S)4Cl2]·C7H8, was crystallized from dichloromethane solution under a toluene atmosphere. It is a dimeric complex in which each of the two Ir(III) centres is octahedrally coordinated by two bridging chloride ligands and by two chelating cyclometalated 2-(4-benzylsulfonyl-2-fluorophenyl)pyridine ligands. The crystal structure analysis unequivocally establishes the trans disposition of the two cyclometalated ligands bound to each Ir(III) centre, contrary to our previous hypothesis of a cis disposition. The latter was based on the (1)H NMR spectra of a series of dimeric benzylsulfonyl-functionalized dichloride-bridged iridium complexes, including the compound described in the present work [Ragni et al. (2009). Chem. Eur. J. 15, 136-148]. The toluene solvent molecules, embedded in cavities in the crystal structure, are highly disordered and could not be modelled successfully; their contribution was removed from the refinement using the SQUEEZE routine in the program PLATON [Spek (2009). Acta Cryst. D65, 148-155].

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...