Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Metallomics ; 14(10)2022 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-36190308

RESUMO

[NiFe]-hydrogenases are used by several human pathogens to catalyze the reversible conversion between molecular hydrogen and protons and electrons. Hydrogenases provide an increased metabolic flexibility for pathogens, such as Escherichia coli and Helicobacter pylori, by allowing the use of molecular hydrogen as an energy source to promote survival in anaerobic environments. With the rise of antimicrobial resistance and the desire for novel therapeutics, the [NiFe]-hydrogenases are alluring targets. Inhibiting the nickel insertion pathway of [NiFe]-hydrogenases is attractive as this pathway is required for the generation of functional enzymes and is orthogonal to human biochemistry. In this work, nickel availability for the production and function of E. coli [NiFe]-hydrogenase was explored through immunoblot and activity assays. Whole-cell hydrogenase activities were assayed in high throughput against a small molecule library of known bioactives. Iodoquinol was identified as a potential inhibitor of the nickel biosynthetic pathway of [NiFe]-hydrogenase through a two-step screening process, but further studies with immunoblot assays showed confounding effects dependent on the cell growth phase. This study highlights the significance of considering the growth phenotype for whole-cell based assays overall and its effects on various cellular processes influenced by metal trafficking and homeostasis.


Assuntos
Anti-Infecciosos , Hidrogenase , Escherichia coli/metabolismo , Humanos , Hidrogênio/metabolismo , Hidrogenase/metabolismo , Iodoquinol , Níquel/metabolismo , Prótons
2.
J Biol Chem ; 294(42): 15373-15385, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31455635

RESUMO

[NiFe]-hydrogenases have attracted attention as potential therapeutic targets or components of a hydrogen-based economy. [NiFe]-hydrogenase production is a complicated process that requires many associated accessory proteins that supply the requisite cofactors and substrates. Current methods for measuring hydrogenase activity have low throughput and often require specialized conditions and reagents. In this work, we developed a whole-cell high-throughput hydrogenase assay based on the colorimetric reduction of benzyl viologen to explore the biological networks of these enzymes in Escherichia coli We utilized this assay to screen the Keio collection, a set of nonlethal single-gene knockouts in E. coli BW25113. The results of this screen highlighted the assay's specificity and revealed known components of the intricate network of systems that underwrite [NiFe]-hydrogenase activity, including nickel homeostasis and formate dehydrogenase activities as well as molybdopterin and selenocysteine biosynthetic pathways. The screen also helped identify several new genetic components that modulate hydrogenase activity. We examined one E. coli strain with undetectable hydrogenase activity in more detail (ΔeutK), finding that nickel delivery to the enzyme active site was completely abrogated, and tracked this effect to an ancillary and unannotated lack of the fumarate and nitrate reduction (FNR) anaerobic regulatory protein. Collectively, these results demonstrate that the whole-cell assay developed here can be used to uncover new information about bacterial [NiFe]-hydrogenase production and to probe the cellular components of microbial nickel homeostasis.


Assuntos
Ensaios Enzimáticos/métodos , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Hidrogenase/química , Análise de Célula Única/métodos , Domínio Catalítico , Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hidrogenase/metabolismo , Níquel/química , Níquel/metabolismo
3.
Inorg Chem ; 58(20): 13604-13618, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31273981

RESUMO

[NiFe]-hydrogenase enzymes catalyze the reversible oxidation of hydrogen at a bimetallic cluster and are used by bacteria and archaea for anaerobic growth and pathogenesis. Maturation of the [NiFe]-hydrogenase requires several accessory proteins to assemble and insert the components of the active site. The penultimate maturation step is the delivery of nickel to a primed hydrogenase enzyme precursor protein, a process that is accomplished by two nickel metallochaperones, the accessory protein HypA and the GTPase HypB. Recent work demonstrated that nickel is rapidly transferred to HypA from GDP-loaded HypB within the context of a protein complex in a nickel selective and unidirectional process. To investigate the mechanism of metal transfer, we examined the allosteric effects of nucleotide cofactors and partner proteins on the nickel environments of HypA and HypB by using a combination of biochemical, microbiological, computational, and spectroscopic techniques. We observed that loading HypB with either GDP or a nonhydrolyzable GTP analogue resulted in a similar nickel environment. In addition, interaction with a mutant version of HypA with disrupted nickel binding, H2Q-HypA, does not induce substantial changes to the HypB G-domain nickel site. Instead, the results demonstrate that HypB modifies the acceptor site of HypA. Analysis of a peptide maquette derived from the N-terminus of HypA revealed that nickel is predominately coordinated by atoms from the N-terminal Met-His motif. Furthermore, HypA is capable of two nickel-binding modes at the N-terminus, a HypB-induced mode and a binding mode that mirrors the peptide maquette. Collectively, these results reveal that HypB brings about changes in the nickel coordination of HypA, providing a mechanism for the HypB-dependent control of the acquisition and release of nickel by HypA.


Assuntos
Proteínas de Transporte/química , Complexos de Coordenação/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimologia , Níquel/química , Proteínas de Transporte/metabolismo , Complexos de Coordenação/metabolismo , Proteínas de Escherichia coli/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Modelos Moleculares , Níquel/metabolismo
4.
Metallomics ; 9(5): 482-493, 2017 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-28352890

RESUMO

[NiFe]-hydrogenase, which catalyzes the reversible conversion between hydrogen gas and protons, is a vital component of the metabolism of many pathogens. Maturation of [NiFe]-hydrogenase requires selective nickel insertion that is completed, in part, by the metallochaperones SlyD and HypB. Escherichia coli HypB binds nickel with sub-picomolar affinity, and the formation of the HypB-SlyD complex activates nickel release from the high-affinity site (HAS) of HypB. In this study, the metal selectivity of this process was investigated. Biochemical experiments revealed that the HAS of full length HypB can bind stoichiometric zinc. Moreover, in contrast to the acceleration of metal release observed with nickel-loaded HypB, SlyD blocks the release of zinc from the HypB HAS. X-ray absorption spectroscopy (XAS) demonstrated that SlyD does not impact the primary coordination sphere of nickel or zinc bound to the HAS of HypB. Instead, computational modeling and XAS of HypB loaded with nickel or zinc indicated that zinc binds to HypB with a different coordination sphere than nickel. The data suggested that Glu9, which is not a nickel ligand, directly coordinates zinc. These results were confirmed through the characterization of E9A-HypB, which afforded weakened zinc affinity compared to wild-type HypB but similar nickel affinity. This mutant HypB fully supports the production of [NiFe]-hydrogenase in E. coli. Altogether, these results are consistent with the model that the HAS of HypB functions as a nickel site during [NiFe]-hydrogenase enzyme maturation and that the metal selectivity is controlled by activation of metal release by SlyD.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Hidrogenase/metabolismo , Peptidilprolil Isomerase/metabolismo , Modelos Moleculares , Níquel/metabolismo , Ligação Proteica , Zinco/metabolismo
5.
Biochemistry ; 55(49): 6821-6831, 2016 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-27951644

RESUMO

[NiFe]-hydrogenase enzymes catalyze the reversible reduction of protons to molecular hydrogen and serve as a vital component of the metabolism of many pathogens. The synthesis of the bimetallic catalytic center requires a suite of accessory proteins, and the penultimate step, nickel insertion, is facilitated by the metallochaperones HypA and HypB. In Escherichia coli, nickel moves from a site in the GTPase domain of HypB to HypA in a process accelerated by GDP. To determine how the transfer of nickel is controlled, the impacts of HypA and nucleotides on the properties of HypB were examined. Integral to this work was His2Gln HypA, a mutant with attenuated nickel affinity that does not support hydrogenase production in E. coli. This mutation inhibits the translocation of nickel from HypB. H2Q-HypA does not modulate the apparent metal affinity of HypB, but the stoichiometry and stability of the HypB-nickel complex are modulated by the nucleotide. Furthermore, the HypA-HypB interaction was detected by gel filtration chromatography if HypB was loaded with GDP, but not a GTP analogue, and the protein complex dissociated upon binding of nickel to His2 of HypA. In contrast, a nucleotide does not modulate the binding of zinc to HypB, and loading zinc into the GTPase domain of HypB inhibits formation of the complex with HypA. These results demonstrate that GTP hydrolysis controls both metal binding and protein-protein interactions, conferring selective and directional nickel transfer during [NiFe]-hydrogenase biosynthesis.


Assuntos
Escherichia coli/enzimologia , Hidrogenase/metabolismo , Metalochaperonas/metabolismo , Níquel/metabolismo , Termodinâmica
6.
Biochemistry ; 55(12): 1689-701, 2016 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-26919691

RESUMO

[NiFe]-hydrogenases catalyze the reversible conversion of hydrogen gas into protons and electrons and are vital metabolic components of many species of bacteria and archaea. At the core of this enzyme is a sophisticated catalytic center comprising nickel and iron, as well as cyanide and carbon monoxide ligands, which is anchored to the large hydrogenase subunit through cysteine residues. The production of this multicomponent active site is accomplished by a collection of accessory proteins and can be divided into discrete stages. The iron component is fashioned by the proteins HypC, HypD, HypE, and HypF, which functionalize iron with cyanide and carbon monoxide. Insertion of the iron center signals to the metallochaperones HypA, HypB, and SlyD to selectively deliver the nickel to the active site. A specific protease recognizes the completed metal cluster and then cleaves the C-terminus of the large subunit, resulting in a conformational change that locks the active site in place. Finally, the large subunit associates with the small subunit, and the complete holoenzyme translocates to its final cellular position. Beyond this broad overview of the [NiFe]-hydrogenase maturation process, biochemical and structural studies are revealing the fundamental underlying molecular mechanisms. Here, we review recent work illuminating how the accessory proteins contribute to the maturation of [NiFe]-hydrogenase and discuss some of the outstanding questions that remain to be resolved.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico/fisiologia , Hidrogenase/química , Hidrogenase/metabolismo , Catálise , Cristalografia por Raios X , Estrutura Secundária de Proteína
7.
Inorg Chem ; 51(22): 12575-89, 2012 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-23106422

RESUMO

Preliminary experiments with the novel acyclic triazole-containing bifunctional chelator H2azapa and the radiometals (64)Cu, (67)Ga, (111)In, and (177)Lu have established its significant versatile potential as an alternative to 1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) for metal-based radiopharmaceuticals. Unlike DOTA, H2azapa radiolabels quantitatively with (64)Cu, (67)Ga, (111)In, and (177)Lu in 10 min at room temperature. In vitro competition experiments with human blood serum show that (64)Cu remained predominantly chelate-bound, with only 2% transchelated to serum proteins after 20 h. Biodistribution experiments with [(64)Cu(azapa)] in mice reveal uptake in various organs, particularly in the liver, lungs, heart, intestines, and kidneys. When compared to [(64)Cu(DOTA)](2-), the lipophilic neutral [(64)Cu(azapa)] was cleared through the gastrointestinal tract and accumulated in the liver, which is common for lipophilic compounds or free (64)Cu. The chelator H2azapa is a model complex for a click-based bifunctional chelating agent, and the lipophilic benzyl "place-holders" will be replaced by hydrophilic peptides to modulate the pharmacokinetics and direct activity away from the liver and gut. The solid-state molecular structure of [In(azapa)(H2O)][ClO4] reveals a very rare eight-coordinate distorted square antiprismatic geometry with one triazole arm bound, and the structure of [(64)Cu(azapa)] shows a distorted octahedral geometry. The present study demonstrates significant potential for bioconjugates of H2azapa as alternatives to DOTA in copper-based radiopharmaceuticals, with the highly modular and "clickable" molecular scaffold of H2azapa easily modified into a variety of bioconjugates. H2azapa is a versatile addition to the "pa" family, joining the previously published H2dedpa ((67/68)Ga and (64)Cu), H4octapa ((111)In, (177)Lu, and (90)Y), and H5decapa ((225)Ac) to cover a wide range of important nuclides.


Assuntos
Quelantes/farmacocinética , Complexos de Coordenação/farmacocinética , Compostos Radiofarmacêuticos/farmacocinética , Animais , Compostos Aza/química , Compostos Aza/farmacocinética , Quelantes/síntese química , Quelantes/química , Complexos de Coordenação/síntese química , Complexos de Coordenação/química , Radioisótopos de Cobre/química , Radioisótopos de Cobre/farmacocinética , Cristalografia por Raios X , Feminino , Radioisótopos de Gálio/química , Radioisótopos de Gálio/farmacocinética , Compostos Heterocíclicos com 1 Anel/química , Compostos Heterocíclicos com 1 Anel/farmacocinética , Humanos , Radioisótopos de Índio/química , Radioisótopos de Índio/farmacocinética , Lutécio/química , Lutécio/farmacocinética , Camundongos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Tomografia por Emissão de Pósitrons , Radioisótopos/farmacocinética , Compostos Radiofarmacêuticos/síntese química , Compostos Radiofarmacêuticos/química , Distribuição Tecidual , Triazóis/química , Triazóis/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...