Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 15(24)2022 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-36556545

RESUMO

We numerically investigated the use of graphene nanoribbons placed on top of silicon-on-insulator (SOI) strip waveguides for light polarization control in silicon photonic-integrated waveguides. We found that two factors mainly affected the polarization control: the graphene chemical potential and the geometrical parameters of the waveguide, such as the waveguide and nanoribbon widths and distance. We show that the graphene chemical potential influences both TE and TM polarizations almost in the same way, while the waveguide width tapering enables both TE-pass and TM-pass polarizing functionalities. Overall, by increasing the oxide spacer thickness between the silicon waveguide and the top graphene layer, the device insertion losses can be reduced, while preserving a high polarization extinction ratio.

2.
Sci Rep ; 12(1): 15436, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104372

RESUMO

We propose and numerically demonstrate a versatile strategy that allows designing highly efficient dual-level grating couplers in different silicon nitride-based photonic platforms. The proposed technique, which can generally be applied to an arbitrary silicon nitride film thickness, is based on the simultaneous optimization of two grating coupler levels to obtain high directionality and grating-fibre mode matching at the same time. This is achieved thanks to the use of two different linear apodizations, with opposite signs, applied to the two grating levels, whose design parameters are determined by using a particle swarm optimization method. Numerical simulations were carried out considering different silicon nitride platforms with 150, 300, 400 and 500 nm thicknesses and initially employing silicon as the material for the top level grating coupler. The use of Si-rich silicon nitride with a refractive index in the range 2.7-3.3 for the top layer material enabled to obtain similar performance (coupling efficiency exceeding - 0.45 dB for the 400 nm thick silicon nitride platform) with relaxed fabrication tolerances. To the best of our knowledge, these numerical results represent the best performance ever reported in the literature for silicon nitride grating couplers without the use of any back-reflector.

3.
Nanomaterials (Basel) ; 12(14)2022 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-35889662

RESUMO

In this work, we show the design of a silicon photonic-based polarization converting device based on the integration of semiconduction InP nanowires on the silicon photonic platform. We present a comprehensive numerical analysis showing that full polarization conversion (from quasi-TE modes to quasi-TM modes, and vice versa) can be achieved in devices exhibiting small footprints (total device lengths below 20 µm) with minimal power loss (<2 dB). The approach described in this work can pave the way to the realization of complex and re-configurable photonic processors based on the manipulation of the state of polarization of guided light beams.

4.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684846

RESUMO

In this review we present some of the recent advances in the field of silicon nitride photonic integrated circuits. The review focuses on the material deposition techniques currently available, illustrating the capabilities of each technique. The review then expands on the functionalisation of the platform to achieve nonlinear processing, optical modulation, nonvolatile optical memories and integration with III-V materials to obtain lasing or gain capabilities.


Assuntos
Fótons , Compostos de Silício
5.
Opt Express ; 28(21): 32173-32184, 2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33115180

RESUMO

We characterize the spectral broadening performance in silica clad and unclad Tantalum pentoxide (Ta2O5) waveguides as a function of the input pulse central wavelength and polarization, sweeping over a wavelength range from 900 nm to 1500 nm, with an average incident power of 110 mW. The waveguides are 0.7 µm high and between 2.2 and 3.2 µm wide, and the SiO2 top cladding layer is 2 µm thick. We model the dispersion of the higher order spatial modes, and use numerical simulations based on the generalized nonlinear Schrödinger equation to analyze the nonlinear behaviour of the spatial modes within the waveguides as well as the dispersive effects observed in the experiments. We achieve octave spanning supercontinuum with an average power of 175 mW incident on the waveguide at 1000 nm pump wavelength.

6.
Opt Express ; 28(9): 14038-14054, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-32403867

RESUMO

This paper presents the design and implementation of a fully differential optical receiver, which is aimed for short reach intensity modulation and direct detection (IMDD) transceiver links. A Si-Ge balanced photodetector (PD) has been co-designed and packaged with a novel differential transimpedance amplifier (TIA). The TIA design is realized with a standard 28 nm CMOS process and operates with a standard digital supply (1V). Without using any equalization or DSP techniques, the proposed receiver can operate up to 54 Gb/s with a BER less than the KP4 limit (2.2×10-4) under an optical modulation amplitude (OMA) of -8.6 dBm, while the power efficiency has been optimized to 0.55 pJ/bit (0.98 pJ/bit if output buffer is included).

7.
Appl Opt ; 58(19): 5165-5169, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31503610

RESUMO

We show that subwavelength Si-rich nitride waveguides efficiently sustain high-speed transmissions at 2 µm. We report the transmission of a 10 Gbit/s signal over 3.5 cm with negligible power penalty. Parametric conversion in the pulsed pump regime is also demonstrated using the same waveguide structure with an efficiency as high as -18 dB.

8.
Opt Express ; 27(5): 6377-6388, 2019 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-30876224

RESUMO

A method for measuring picosecond pulse width by using only fiber components and optical power meters is presented. We have shown that the output power splitting ratio of a non-linear fiber loop mirror can be used to extract the full-width half maximum of the optical pulse, assuming a known slowly varying envelope shape and internal phase structure. Theoretical evaluation was carried out using both self-phase and cross-phase modulation approaches, with the latter showing a twofold sensitivity increase, as expected. In the experimental validation, pulses from an actively fiber mode-locked laser at the repetition rate of 10 GHz were incrementally temporally dispersed by using SMF-28 fiber, and then successfully measured over a pulse width range of 2-10 ps, with a resolution of 0.25 ps. This range can be easily extended from 0.25 to 40 ps by selecting different physical setup parameters.

9.
Opt Express ; 26(2): 790-796, 2018 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-29401959

RESUMO

We report on the generation of an optical comb of highly uniform in power frequency lines (variation less than 0.7 dB) using a silicon ring resonator modulator. A characterization involving the measurement of the complex transfer function of the ring is presented and five frequency tones with a 10-GHz spacing are produced using a dual-frequency electrical input at 10 and 20 GHz. A comb shape comparison is conducted for different modulator bias voltages, indicating optimum operation at a small forward-bias voltage. A time-domain measurement confirmed that the comb signal was highly coherent, forming 20.3-ps-long pulses.

10.
Nat Commun ; 9(1): 182, 2018 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-29330360

RESUMO

Recently, coherent control of the optical response of thin films in standing waves has attracted considerable attention, ranging from applications in excitation-selective spectroscopy and nonlinear optics to all-optical image processing. Here, we show that integration of metamaterial and optical fibre technologies allows the use of coherently controlled absorption in a fully fiberized and packaged switching metadevice. With this metadevice, which controls light with light in a nanoscale plasmonic metamaterial film on an optical fibre tip, we provide proof-of-principle demonstrations of logical functions XOR, NOT and AND that are performed within a coherent fibre network at wavelengths between 1530 and 1565 nm. The metadevice has been tested at up to 40 gigabits per second and sub-milliwatt power levels. Since coherent absorption can operate at the single-photon level and with 100 THz bandwidth, we argue that the demonstrated all-optical switch concept has potential applications in coherent and quantum information networks.

11.
Sci Rep ; 7(1): 16670, 2017 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-29192215

RESUMO

We present a simple and practical strategy that allows to design high-efficiency grating couplers. The technique is based on the simultaneous apodization of two structural parameters: the grating period and the fill-factor, along with the optimization of the grating coupler etching depth. Considering a 260 nm Si-thick Silicon-on-insulator platform, we numerically demonstrated a coupling efficiency of -0.8 dB (83%), well matching the experimental value of -0.9 dB (81%). Thanks to the optimized design, these results represent the best performance ever reported in the literature for SOI structures without the use of any back-reflector.

12.
Opt Express ; 25(16): 19332-19342, 2017 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-29041127

RESUMO

We have designed and fabricated a silicon photonic in-phase-quadrature (IQ) modulator based on a nested dual-drive Mach-Zehnder structure incorporating electrical packaging. We have assessed its use for generating Nyquist-shaped single sideband (SSB) signals by operating it either as an IQ Mach-Zehnder modulator (IQ-MZM) or using just a single branch of the dual-drive Mach-Zehnder modulator (DD-MZM). The impact of electrical packaging on the modulator bandwidth is also analyzed. We demonstrate 40 Gb/s (10Gbaud) 16-ary quadrature amplitude modulation (16-QAM) Nyquist-shaped SSB transmission over 160 km standard single mode fiber (SSMF). Without using any chromatic dispersion compensation, the bit error rates (BERs) of 5.4 × 10-4 and 9.0 × 10-5 were measured for the DD-MZM and IQ-MZM, respectively, far below the 7% hard-decision forward error correction threshold. The performance difference between IQ-MZM and DD-MZM is most likely due to the non-ideal electrical packaging. Our work is the first experimental comparison between silicon IQ-MZM and silicon DD-MZM in generating SSB signals. We also demonstrate 50 Gb/s (12.5Gbaud) 16-QAM Nyquist-shaped SSB transmission over 320 km SSMF with a BER of 2.7 × 10-3. Both the silicon IQ-MZM and the DD-MZM show potential for optical transmission at metro scale and for data center interconnection.

13.
Opt Express ; 25(9): 9761-9767, 2017 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-28468356

RESUMO

We report on the experimental characterization, in the telecom C-band, of group-velocity dispersion (D) in 100-nm high rectangular strip waveguides realized by silicon-on-insulator technology. We compare the experimental results with numerical predictions, showing that 100-nm high waveguides exhibit normal dispersion and that the absolute value of the dispersion coefficient D decreases as the waveguide width is increased. D at 1550 nm varies from -8130 to -3900 ps/(nm·km) by increasing the waveguide width from 500 to 800 nm.

14.
Sci Rep ; 7(1): 22, 2017 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-28154419

RESUMO

Nonlinear silicon photonic devices have attracted considerable attention thanks to their ability to show large third-order nonlinear effects at moderate power levels allowing for all-optical signal processing functionalities in miniaturized components. Although significant efforts have been made and many nonlinear optical functions have already been demonstrated in this platform, the performance of nonlinear silicon photonic devices remains fundamentally limited at the telecom wavelength region due to the two photon absorption (TPA) and related effects. In this work, we propose an alternative CMOS-compatible platform, based on silicon-rich silicon nitride that can overcome this limitation. By carefully selecting the material deposition parameters, we show that both of the device linear and nonlinear properties can be tuned in order to exhibit the desired behaviour at the selected wavelength region. A rigorous and systematic fabrication and characterization campaign of different material compositions is presented, enabling us to demonstrate TPA-free CMOS-compatible waveguides with low linear loss (~1.5 dB/cm) and enhanced Kerr nonlinear response (Re{γ} = 16 Wm-1). Thanks to these properties, our nonlinear waveguides are able to produce a π nonlinear phase shift, paving the way for the development of practical devices for future optical communication applications.

15.
Opt Lett ; 40(7): 1274-7, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25831311

RESUMO

A compact silicon ring resonator is demonstrated that allows simple electrical tuning of the ring coupling coefficient and Q-factor and therefore the resonant enhancement of on-chip nonlinear optical processes. Fabrication-induced variation in designed coupling fraction, crucial in the resonator performance, can be overcome using this post-fabrication trimming technique. Tuning of the microring resonator across the critical coupling point is demonstrated, exhibiting a Q-factor tunable between 9000 and 96,000. Consequently, resonantly enhanced four-wave mixing shows tunable efficiency between -40 and -16.3 dB at an ultra-low on-chip pump power of 0.7 mW.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...